This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A346621 #21 Apr 24 2025 06:15:28 %S A346621 0,0,0,0,0,6,6,6,6,16,16,28,28,42,57,57,57,75,75,95,116,138,138,162, %T A346621 162,188,188,216,216,216,216,216,249,283,318,354,354,392,431,471,471, %U A346621 471,471,515,560,606,606,654,654,704,755,807,807,861,916,972,1029,1087,1087,1087 %N A346621 a(n) = Sum_{ x <= n : omega(x) = 2 } x. %H A346621 Alois P. Heinz, <a href="/A346621/b346621.txt">Table of n, a(n) for n = 1..20000</a> %p A346621 a:= proc(n) option remember; `if`(n=0, 0, %p A346621 a(n-1)+`if`(nops(ifactors(n)[2])=2, n, 0)) %p A346621 end: %p A346621 seq(a(n), n=1..60); # _Alois P. Heinz_, Aug 23 2021 %t A346621 a[n_] := a[n] = If[n <= 2, 0, a[n-1] + If[PrimeNu[n] == 2, n, 0]]; %t A346621 Table[a[n], {n, 1, 60}] (* _Jean-François Alcover_, Apr 24 2025 *) %o A346621 (PARI) a(n) = sum(x=1, n, if (omega(x)==2, x)); \\ _Michel Marcus_, Aug 23 2021 %o A346621 (Python) %o A346621 from sympy import primefactors %o A346621 def A346621(n): %o A346621 return 0 if n <= 2 else A346621(n-1) + (n if len(primefactors(n)) == 2 else 0) # _Chai Wah Wu_, Aug 23 2021 %Y A346621 Cf. A001221, A007774, A082997, A346622, A346623. %K A346621 nonn %O A346621 1,6 %A A346621 _N. J. A. Sloane_, Aug 23 2021