This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A346623 #17 Feb 13 2023 05:16:57 %S A346623 0,0,0,0,0,0,0,0,0,0,0,0,0,0,15,15,15,15,15,15,36,36,36,36,36,36,36, %T A346623 36,36,36,36,36,69,69,104,104,104,104,143,143,143,143,143,143,188,188, %U A346623 188,188,188,188,239,239,239,239,294,294,351,351,351,351,351,351,414,414,479,479,479,479 %N A346623 a(n) = Sum_{ x <= n : x odd and omega(x) = 2 } x. %H A346623 Alois P. Heinz, <a href="/A346623/b346623.txt">Table of n, a(n) for n = 1..20000</a> %p A346623 a:= proc(n) option remember; `if`(n=0, 0, a(n-1)+ %p A346623 `if`(n::odd and nops(ifactors(n)[2])=2, n, 0)) %p A346623 end: %p A346623 seq(a(n), n=1..68); # _Alois P. Heinz_, Aug 23 2021 %t A346623 a[n_] := a[n] = If[n == 1, 0, a[n-1] + If[OddQ[n] && PrimeNu[n] == 2, n, 0]]; %t A346623 Table[a[n], {n, 1, 100}] (* _Jean-François Alcover_, Feb 13 2023 *) %o A346623 (Python) %o A346623 from sympy import primefactors %o A346623 def A346623(n): %o A346623 return 0 if n <= 2 else A346623(n-1) + (n if n % 2 and len(primefactors(n)) == 2 else 0) # _Chai Wah Wu_, Aug 23 2021 %Y A346623 Cf. A001221, A007774, A346221, A346222. %K A346623 nonn %O A346623 1,15 %A A346623 _N. J. A. Sloane_, Aug 23 2021