This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A346635 #17 Nov 27 2022 10:34:49 %S A346635 1,2,3,5,7,8,11,12,13,17,19,20,23,27,28,29,31,32,37,41,43,44,45,47,48, %T A346635 52,53,59,61,63,67,68,71,73,76,79,80,83,89,92,97,99,101,103,107,108, %U A346635 109,112,113,116,117,124,125,127,128,131,137,139,148,149,151,153 %N A346635 Numbers whose division (or multiplication) by their greatest prime factor yields a perfect square. Numbers k such that k*A006530(k) is a perfect square. %C A346635 This is the sorted version of A342768(n) = position of first appearance of n in A346701 (but A346703 works also). %F A346635 a(n) = A129597(n)/2 for n > 1. %e A346635 The terms together with their prime indices begin: %e A346635 1: {} 31: {11} 71: {20} %e A346635 2: {1} 32: {1,1,1,1,1} 73: {21} %e A346635 3: {2} 37: {12} 76: {1,1,8} %e A346635 5: {3} 41: {13} 79: {22} %e A346635 7: {4} 43: {14} 80: {1,1,1,1,3} %e A346635 8: {1,1,1} 44: {1,1,5} 83: {23} %e A346635 11: {5} 45: {2,2,3} 89: {24} %e A346635 12: {1,1,2} 47: {15} 92: {1,1,9} %e A346635 13: {6} 48: {1,1,1,1,2} 97: {25} %e A346635 17: {7} 52: {1,1,6} 99: {2,2,5} %e A346635 19: {8} 53: {16} 101: {26} %e A346635 20: {1,1,3} 59: {17} 103: {27} %e A346635 23: {9} 61: {18} 107: {28} %e A346635 27: {2,2,2} 63: {2,2,4} 108: {1,1,2,2,2} %e A346635 28: {1,1,4} 67: {19} 109: {29} %e A346635 29: {10} 68: {1,1,7} 112: {1,1,1,1,4} %p A346635 filter:= proc(n) issqr(n/max(numtheory:-factorset(n))) end proc: %p A346635 filter(1):= true: %p A346635 select(filter, [$1..200]); # _Robert Israel_, Nov 26 2022 %t A346635 sqrQ[n_]:=IntegerQ[Sqrt[n]]; %t A346635 Select[Range[100],sqrQ[#*FactorInteger[#][[-1,1]]]&] %o A346635 (PARI) isok(m) = (m==1) || issquare(m/vecmax(factor(m)[,1])); \\ _Michel Marcus_, Aug 12 2021 %Y A346635 Removing 1 gives a subset of A026424. %Y A346635 The unsorted even version is A129597. %Y A346635 The unsorted version is A342768(n) = A342767(n,n). %Y A346635 Except the first term, the even version is 2*a(n). %Y A346635 A000290 lists squares. %Y A346635 A001221 counts distinct prime factors. %Y A346635 A001222 counts all prime factors. %Y A346635 A006530 gives the greatest prime factor. %Y A346635 A061395 gives the greatest prime index. %Y A346635 A027193 counts partitions of odd length. %Y A346635 A056239 adds up prime indices, row sums of A112798. %Y A346635 A209281 = odd bisection sum of standard compositions (even: A346633). %Y A346635 A316524 = alternating sum of prime indices (sign: A344617, rev.: A344616). %Y A346635 A325534 counts separable partitions, ranked by A335433. %Y A346635 A325535 counts inseparable partitions, ranked by A335448. %Y A346635 A344606 counts alternating permutations of prime indices. %Y A346635 A346697 = odd bisection sum of prime indices (weights of A346703). %Y A346635 A346699 = odd bisection sum of reversed prime indices (weights of A346701). %Y A346635 Cf. A028260, A033942, A035363, A037143, A341446, A344653, A345957, A345958, A345959, A346698, A346700, A346704. %K A346635 nonn %O A346635 1,2 %A A346635 _Gus Wiseman_, Aug 10 2021