This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A346653 #9 Jul 27 2021 21:18:49 %S A346653 3,1579,3967,14323,30763,32189,41389,61471,70117,74051,74707,79691, %T A346653 95239,154157,157181,157433,169003,184321,215063,237563,265271,300877, %U A346653 303217,320741,326119,366713,382241,392531,408689,544723,572749,584099,587219,615103,639487,653561,674231,687151,698483 %N A346653 Numbers p that are the first of three consecutive primes p,q,r such that p*q*r-(p+q+r) and p*q*r+(p+q+r) are both in A001043. %C A346653 Numbers p that are the first of three consecutive primes p,q,r such that p*q*r-(p+q+r) is the sum of two consecutive primes and p*q*r+(p+q+r) is the sum of two consecutive primes. %H A346653 Robert Israel, <a href="/A346653/b346653.txt">Table of n, a(n) for n = 1..1000</a> %e A346653 a(3) = 3967 is a term because 3967, 3989, 4001 are consecutive primes with %e A346653 3967*3989*4001-(3967+3989+4001) = 63313264406 = 31656632197+31656632209, %e A346653 3967*3989*4001+(3967+3989+4001) = 63313288320 = 31656644153+31656644167, %e A346653 31656632197 and 31656632209 are consecutive primes %e A346653 and 31656644153 and 31656644167 are consecutive primes. %p A346653 q:= 2: r:= 3: %p A346653 R:= NULL: count:= 0: %p A346653 while count < 40 do %p A346653 p:= q; q:= r; r:= nextprime(r); %p A346653 s:= p+q+r; %p A346653 v:= p*q*r+s; %p A346653 t:= prevprime(v/2); %p A346653 if nextprime(t)+t <> v then next fi; %p A346653 v:= v-2*s; %p A346653 t:= prevprime(v/2); %p A346653 if nextprime(t)+t = v then %p A346653 count:= count+1; %p A346653 R:= R, p; %p A346653 fi %p A346653 od: %p A346653 R; %Y A346653 Cf. A001043. %K A346653 nonn %O A346653 1,1 %A A346653 _J. M. Bergot_ and _Robert Israel_, Jul 26 2021