cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A346671 a(n) = Sum_{k=0..n} binomial(7*k,k) / (6*k + 1).

This page as a plain text file.
%I A346671 #14 Jul 30 2021 10:19:16
%S A346671 1,2,9,79,898,11370,153148,2150836,31140511,461462144,6964815000,
%T A346671 106691488130,1654539334220,25923944408960,409770113121064,
%U A346671 6526344613981944,104632592920840659,1687270854882480906,27348675382672733281,445328790513987869681,7281393330439106226281
%N A346671 a(n) = Sum_{k=0..n} binomial(7*k,k) / (6*k + 1).
%C A346671 Partial sums of A002296.
%H A346671 Seiichi Manyama, <a href="/A346671/b346671.txt">Table of n, a(n) for n = 0..806</a>
%F A346671 G.f. A(x) satisfies: A(x) = 1 / (1 - x) + x * (1 - x)^6 * A(x)^7.
%F A346671 a(n) ~ 7^(7*n + 15/2) / (776887 * sqrt(Pi) * n^(3/2) * 2^(6*n + 2) * 3^(6*n + 3/2)). - _Vaclav Kotesovec_, Jul 30 2021
%t A346671 Table[Sum[Binomial[7 k, k]/(6 k + 1), {k, 0, n}], {n, 0, 20}]
%t A346671 nmax = 20; A[_] = 0; Do[A[x_] = 1/(1 - x) + x (1 - x)^6 A[x]^7 + O[x]^(nmax + 1) // Normal, nmax + 1]; CoefficientList[A[x], x]
%o A346671 (PARI) a(n) = sum(k=0, n, binomial(7*k, k)/(6*k+1)); \\ _Michel Marcus_, Jul 28 2021
%Y A346671 Cf. A002296, A014137, A104859, A345367, A345368, A346065, A346649, A346672.
%K A346671 nonn
%O A346671 0,2
%A A346671 _Ilya Gutkovskiy_, Jul 28 2021