cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A346679 Expansion of Product_{k>=1} (1 + x^k*(1+x)) / (1 - x^k*(1+x)).

This page as a plain text file.
%I A346679 #19 Jul 31 2021 10:14:29
%S A346679 1,2,6,14,32,68,140,280,544,1034,1930,3544,6416,11472,20288,35532,
%T A346679 61696,106304,181906,309362,523228,880576,1475424,2462302,4094682,
%U A346679 6787588,11219504,18498094,30429502,49955706,81864400,133940690,218834842,357090226,582050680
%N A346679 Expansion of Product_{k>=1} (1 + x^k*(1+x)) / (1 - x^k*(1+x)).
%C A346679 Convolution of A160571 and A227681.
%F A346679 a(n) ~ 2*c * phi^(n+1) / sqrt(5), where phi = A001622 is the golden ratio and c = Product_{k>=2} (phi^k + 1 + 1/phi) / (phi^k - 1 - 1/phi) = 32.9911047431709572178149423384235021321790640826498395008790713974339...
%t A346679 nmax = 50; CoefficientList[Series[Product[(1+x^k*(1+x))/(1-x^k*(1+x)), {k, 1, nmax}], {x, 0, nmax}], x]
%Y A346679 Cf. A160571, A227681.
%K A346679 nonn
%O A346679 0,2
%A A346679 _Vaclav Kotesovec_, Jul 31 2021