This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A346690 #19 Nov 22 2022 22:19:18 %S A346690 0,1,2,3,4,5,-1,0,1,2,3,4,-2,-1,0,1,2,3,-3,-2,-1,0,1,2,-4,-3,-2,-1,0, %T A346690 1,-5,-4,-3,-2,-1,0,1,2,3,4,5,6,0,1,2,3,4,5,-1,0,1,2,3,4,-2,-1,0,1,2, %U A346690 3,-3,-2,-1,0,1,2,-4,-3,-2,-1,0,1,2,3,4,5,6,7,1,2,3,4,5,6,0,1,2,3,4,5,-1,0,1,2,3,4,-2,-1,0,1,2,3,-3,-2,-1 %N A346690 Replace 6^k with (-1)^k in base-6 expansion of n. %C A346690 If n has base-6 expansion abc..xyz with least significant digit z, a(n) = z - y + x - w + ... %H A346690 Robert Israel, <a href="/A346690/b346690.txt">Table of n, a(n) for n = 0..10000</a> %F A346690 G.f. A(x) satisfies: A(x) = x * (1 + 2*x + 3*x^2 + 4*x^3 + 5*x^4) / (1 - x^6) - (1 + x + x^2 + x^3 + x^4 + x^5) * A(x^6). %F A346690 a(n) = n + 7 * Sum_{k>=1} (-1)^k * floor(n/6^k). %F A346690 a(6*n+j) = j - a(n) for 0 <= j <= 5. - _Robert Israel_, Nov 21 2022 %e A346690 59 = 135_6, 5 - 3 + 1 = 3, so a(59) = 3. %p A346690 f:= proc(n) option remember; (n mod 6) - procname(floor(n/6)) end proc: %p A346690 f(0):= 0: %p A346690 map(f, [$1..100]); # _Robert Israel_, Nov 21 2022 %t A346690 nmax = 104; A[_] = 0; Do[A[x_] = x (1 + 2 x + 3 x^2 + 4 x^3 + 5 x^4)/(1 - x^6) - (1 + x + x^2 + x^3 + x^4 + x^5) A[x^6] + O[x]^(nmax + 1) // Normal, nmax + 1]; CoefficientList[A[x], x] %t A346690 Table[n + 7 Sum[(-1)^k Floor[n/6^k], {k, 1, Floor[Log[6, n]]}], {n, 0, 104}] %o A346690 (Python) %o A346690 from sympy.ntheory.digits import digits %o A346690 def a(n): %o A346690 return sum(bi*(-1)**k for k, bi in enumerate(digits(n, 6)[1:][::-1])) %o A346690 print([a(n) for n in range(105)]) # _Michael S. Branicky_, Jul 29 2021 %o A346690 (PARI) a(n) = subst(Pol(digits(n, 6)), 'x, -1); \\ _Michel Marcus_, Nov 22 2022 %Y A346690 Cf. A007092, A053827, A055017, A065359, A065368, A346688, A346689, A346691. %K A346690 sign,base,easy %O A346690 0,3 %A A346690 _Ilya Gutkovskiy_, Jul 29 2021