A346699 Sum of the odd bisection (odd-indexed parts) of the integer partition with Heinz number n.
0, 1, 2, 1, 3, 2, 4, 2, 2, 3, 5, 3, 6, 4, 3, 2, 7, 3, 8, 4, 4, 5, 9, 3, 3, 6, 4, 5, 10, 4, 11, 3, 5, 7, 4, 3, 12, 8, 6, 4, 13, 5, 14, 6, 5, 9, 15, 4, 4, 4, 7, 7, 16, 4, 5, 5, 8, 10, 17, 4, 18, 11, 6, 3, 6, 6, 19, 8, 9, 5, 20, 4, 21, 12, 5, 9, 5, 7, 22, 5, 4
Offset: 1
Keywords
Examples
The partition with Heinz number 1100 is (5,3,3,1,1), so a(1100) = 5 + 3 + 1 = 9. The partition with Heinz number 2100 is (4,3,3,2,1,1), so a(2100) = 4 + 3 + 1 = 8.
Crossrefs
Programs
-
Mathematica
primeMS[n_]:=If[n==1,{},Flatten[Cases[FactorInteger[n],{p_,k_}:>Table[PrimePi[p],{k}]]]]; Table[Total[First/@Partition[Append[Reverse[primeMS[n]],0],2]],{n,100}]
Comments