cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A346704 Product of primes at even positions in the weakly increasing list (with multiplicity) of prime factors of n.

This page as a plain text file.
%I A346704 #12 Aug 13 2024 09:10:34
%S A346704 1,1,1,2,1,3,1,2,3,5,1,2,1,7,5,4,1,3,1,2,7,11,1,6,5,13,3,2,1,3,1,4,11,
%T A346704 17,7,6,1,19,13,10,1,3,1,2,3,23,1,4,7,5,17,2,1,9,11,14,19,29,1,10,1,
%U A346704 31,3,8,13,3,1,2,23,5,1,6,1,37,5,2,11,3,1,4,9
%N A346704 Product of primes at even positions in the weakly increasing list (with multiplicity) of prime factors of n.
%H A346704 Robert Israel, <a href="/A346704/b346704.txt">Table of n, a(n) for n = 1..10000</a>
%F A346704 a(n) * A346703(n) = n.
%F A346704 A056239(a(n)) = A346698(n).
%e A346704 The prime factors of 108 are (2,2,3,3,3), with even bisection (2,3), with product 6, so a(108) = 6.
%e A346704 The prime factors of 720 are (2,2,2,2,3,3,5), with even bisection (2,2,3), with product 12, so a(720) = 12.
%p A346704 f:= proc(n) local F,i;
%p A346704   F:= ifactors(n)[2];
%p A346704   F:= sort(map(t -> t[1]$t[2],F));
%p A346704   mul(F[i],i=2..nops(F),2)
%p A346704 end proc:
%p A346704 map(f, [$1..100]); # _Robert Israel_, Aug 12 2024
%t A346704 Table[Times@@Last/@Partition[Flatten[Apply[ConstantArray,FactorInteger[n],{1}]],2],{n,100}]
%Y A346704 Positions of first appearances are A129597.
%Y A346704 Positions of 1's are A008578.
%Y A346704 Positions of primes are A168645.
%Y A346704 The sum of prime indices of a(n) is A346698(n).
%Y A346704 The odd version is A346703 (sum: A346697).
%Y A346704 The odd reverse version is A346701 (sum: A346699).
%Y A346704 The reverse version appears to be A329888 (sum: A346700).
%Y A346704 A001221 counts distinct prime factors.
%Y A346704 A001222 counts all prime factors.
%Y A346704 A027187 counts partitions of even length, ranked by A028260.
%Y A346704 A056239 adds up prime indices, row sums of A112798.
%Y A346704 A103919 counts partitions by sum and alternating sum (reverse: A344612).
%Y A346704 A316524 gives the alternating sum of prime indices (reverse: A344616).
%Y A346704 A335433/A335448 rank separable/inseparable partitions.
%Y A346704 A344606 counts alternating permutations of prime indices.
%Y A346704 A344617 gives the sign of the alternating sum of prime indices.
%Y A346704 A346633 adds up the even bisection of standard compositions.
%Y A346704 Cf. A026424, A035363, A209281, A236913, A342768, A344653, A345957, A345958, A345960, A345961, A345962.
%K A346704 nonn,look
%O A346704 1,4
%A A346704 _Gus Wiseman_, Aug 08 2021