This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A346704 #12 Aug 13 2024 09:10:34 %S A346704 1,1,1,2,1,3,1,2,3,5,1,2,1,7,5,4,1,3,1,2,7,11,1,6,5,13,3,2,1,3,1,4,11, %T A346704 17,7,6,1,19,13,10,1,3,1,2,3,23,1,4,7,5,17,2,1,9,11,14,19,29,1,10,1, %U A346704 31,3,8,13,3,1,2,23,5,1,6,1,37,5,2,11,3,1,4,9 %N A346704 Product of primes at even positions in the weakly increasing list (with multiplicity) of prime factors of n. %H A346704 Robert Israel, <a href="/A346704/b346704.txt">Table of n, a(n) for n = 1..10000</a> %F A346704 a(n) * A346703(n) = n. %F A346704 A056239(a(n)) = A346698(n). %e A346704 The prime factors of 108 are (2,2,3,3,3), with even bisection (2,3), with product 6, so a(108) = 6. %e A346704 The prime factors of 720 are (2,2,2,2,3,3,5), with even bisection (2,2,3), with product 12, so a(720) = 12. %p A346704 f:= proc(n) local F,i; %p A346704 F:= ifactors(n)[2]; %p A346704 F:= sort(map(t -> t[1]$t[2],F)); %p A346704 mul(F[i],i=2..nops(F),2) %p A346704 end proc: %p A346704 map(f, [$1..100]); # _Robert Israel_, Aug 12 2024 %t A346704 Table[Times@@Last/@Partition[Flatten[Apply[ConstantArray,FactorInteger[n],{1}]],2],{n,100}] %Y A346704 Positions of first appearances are A129597. %Y A346704 Positions of 1's are A008578. %Y A346704 Positions of primes are A168645. %Y A346704 The sum of prime indices of a(n) is A346698(n). %Y A346704 The odd version is A346703 (sum: A346697). %Y A346704 The odd reverse version is A346701 (sum: A346699). %Y A346704 The reverse version appears to be A329888 (sum: A346700). %Y A346704 A001221 counts distinct prime factors. %Y A346704 A001222 counts all prime factors. %Y A346704 A027187 counts partitions of even length, ranked by A028260. %Y A346704 A056239 adds up prime indices, row sums of A112798. %Y A346704 A103919 counts partitions by sum and alternating sum (reverse: A344612). %Y A346704 A316524 gives the alternating sum of prime indices (reverse: A344616). %Y A346704 A335433/A335448 rank separable/inseparable partitions. %Y A346704 A344606 counts alternating permutations of prime indices. %Y A346704 A344617 gives the sign of the alternating sum of prime indices. %Y A346704 A346633 adds up the even bisection of standard compositions. %Y A346704 Cf. A026424, A035363, A209281, A236913, A342768, A344653, A345957, A345958, A345960, A345961, A345962. %K A346704 nonn,look %O A346704 1,4 %A A346704 _Gus Wiseman_, Aug 08 2021