This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A346706 #35 Sep 26 2021 16:08:03 %S A346706 5,17,41,197,281,38921,121631,325019,642869,681257,1005551,1086557, %T A346706 2327399,4975457,7584569,7819787,8130767,8522159,14848187,17769377, %U A346706 18615677,19949537,20144051,21171191,24845207,33669047,35166449,56039957,73479947,82366769,92731367 %N A346706 Lesser members of twin primes which are the sum of the first k primes for some number k. %H A346706 Sebastian Sargenti, <a href="/A346706/b346706.txt">Table of n, a(n) for n = 1..128</a> %e A346706 5 = 2+3; 5 is a twin prime with 7. %e A346706 17 = 2+3+5+7; 17 is a twin prime with 19. %e A346706 41 = 2+3+5+7+11+13; 41 is a twin prime with 43. %e A346706 197 = 2+3+5+7+11+13+17+19+23+29+31+37; 197 is a twin prime with 199. %t A346706 Select[Accumulate @ Select[Range[45000], PrimeQ], PrimeQ[#] && PrimeQ[# + 2] &] (* _Amiram Eldar_, Aug 01 2021 *) %o A346706 (Python) %o A346706 from itertools import accumulate %o A346706 from sympy import isprime, primerange %o A346706 list(filter(lambda p: isprime(p) and isprime(p+2), accumulate(primerange(2, 10000)))) # _David Radcliffe_, Aug 01 2021 %o A346706 (PARI) lista(nn) = {my(s=0); for (n=1, nn, s += prime(n); if (isprime(s) && isprime(s+2), print1(s, ", ")););} \\ _Michel Marcus_, Aug 21 2021 %Y A346706 Cf. A000040, A007504. %Y A346706 Intersection of A001359 and A013918. %K A346706 nonn %O A346706 1,1 %A A346706 _Sebastian Sargenti_, Jul 29 2021 %E A346706 a(13)-a(31) from _Jon E. Schoenfield_, Jul 29 2021