A346713 Decimal expansion of sqrt(log 2).
8, 3, 2, 5, 5, 4, 6, 1, 1, 1, 5, 7, 6, 9, 7, 7, 5, 6, 3, 5, 3, 1, 6, 4, 6, 4, 4, 8, 9, 5, 2, 0, 1, 0, 4, 7, 6, 3, 0, 5, 8, 8, 8, 5, 2, 2, 6, 4, 4, 4, 0, 7, 2, 9, 1, 6, 6, 8, 2, 9, 1, 1, 7, 2, 3, 4, 0, 7, 9, 4, 3, 5, 1, 9, 7, 3, 0, 4, 6, 3, 7, 1, 4, 8, 9, 9, 8, 0
Offset: 0
Examples
0.8325546111576977563531646448952010476305888522644407291668291172340794351973...
References
- Ludwig Seidel, Ueber eine Darstellung des Kreisbogens, des Logarithmus und des elliptischen Integrales erster Art durch unendliche Producte, Borchardt J., (1871), vol. 73, pp. 273-291.
Crossrefs
Cf. A002162.
Programs
-
Julia
using Nemo R = RealField(305); _1 = R(1); _2 = R(2); H = R(1/2) p = prod((_2/(_2^(_1/_2^k) + 1))^H for k in 1:300) println(p)
-
Maple
Digits := 120; sqrt(log(2)): evalf(%)*10^91: ListTools:-Reverse(convert(floor(%), base, 10));
-
Mathematica
RealDigits[Sqrt[Log[2]], 10, 100][[1]] (* Amiram Eldar, Sep 01 2021 *)
Formula
Equals Product_{k>=1} (2/(2^(1/2^k) + 1))^(1/2).
Equals sqrt(2*arccoth(3)) = sqrt(A002162).
Comments