cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A346713 Decimal expansion of sqrt(log 2).

Original entry on oeis.org

8, 3, 2, 5, 5, 4, 6, 1, 1, 1, 5, 7, 6, 9, 7, 7, 5, 6, 3, 5, 3, 1, 6, 4, 6, 4, 4, 8, 9, 5, 2, 0, 1, 0, 4, 7, 6, 3, 0, 5, 8, 8, 8, 5, 2, 2, 6, 4, 4, 4, 0, 7, 2, 9, 1, 6, 6, 8, 2, 9, 1, 1, 7, 2, 3, 4, 0, 7, 9, 4, 3, 5, 1, 9, 7, 3, 0, 4, 6, 3, 7, 1, 4, 8, 9, 9, 8, 0
Offset: 0

Views

Author

Peter Luschny, Sep 01 2021

Keywords

Comments

Represents a transcendental number.

Examples

			0.8325546111576977563531646448952010476305888522644407291668291172340794351973...
		

References

  • Ludwig Seidel, Ueber eine Darstellung des Kreisbogens, des Logarithmus und des elliptischen Integrales erster Art durch unendliche Producte, Borchardt J., (1871), vol. 73, pp. 273-291.

Crossrefs

Cf. A002162.

Programs

  • Julia
    using Nemo
    R = RealField(305); _1 = R(1); _2 = R(2); H = R(1/2)
    p = prod((_2/(_2^(_1/_2^k) + 1))^H for k in 1:300)
    println(p)
  • Maple
    Digits := 120; sqrt(log(2)): evalf(%)*10^91:
    ListTools:-Reverse(convert(floor(%), base, 10));
  • Mathematica
    RealDigits[Sqrt[Log[2]], 10, 100][[1]] (* Amiram Eldar, Sep 01 2021 *)

Formula

Equals Product_{k>=1} (2/(2^(1/2^k) + 1))^(1/2).
Equals sqrt(2*arccoth(3)) = sqrt(A002162).