A346742 Numbers that may be built from fewer ones using floor(j/k) in addition to +, -, and *.
1860043, 3198487, 4782847, 5580129, 6111571, 9300217, 9566302, 9595461, 9595462, 9654511, 10678027, 12725059, 12843157, 13551745, 14349271, 14614627, 16740391, 17094685, 18334713, 18334714, 19220449, 27900651, 28698178, 28701094, 29494975, 31620739, 32034081, 33484063, 34100797, 35872267, 37998031
Offset: 1
Keywords
Examples
The smallest n for which c(n) as defined in the comments is strictly less than A091333(n) is 1860043, because 1860043 = (7*3^12)//2 which requires c(7) + 12*c(3) + c(2) = 6 + 12*3 + 2 = 44 ones to express with these operations, whereas A091333(1860043) = A005245(1860043) = 45 by virtue of the minimal expression 1860043 = 2(2^2*5*7(3^4(3^4+1)+1)+1)+1 requiring 2+2*2+5+6+3*4+3*4+1+1+1+1 = 45 ones. Hence, the first term in this sequence is 1860043. The next three terms with their respective minimal expressions: 3198487 = (3^9(2^2*3^4+1))//2 [46 ones] = 2*3(3^2(2^2*3*5+1)(2^2*3^5-1)+2)+1 [47 ones] = 2*3(2(7(2^2*3+1)(2^2*3(3^5+1)+1)+1)+1)+1 [48 ones]. Thus n=319487 is the least n for which c(n) < A091333(n) < A005245(n). 4782847 = (3^5(2*3^9-1))//2 [47 ones] = 2*3(2*5(3^2(2^2*3^3(3^4+1)+1)+1)+1)+1 [48 ones] 5580129 = 3*1860043 = 3((7*3^12)//2) [47 ones] = 2^3(3*5*7(3^4(3^4+1)+1)+1)+1 [48 ones]. Note this example critically takes advantage of the fact that * and // are not associative.
Comments