This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A346756 #52 Dec 28 2023 16:12:07 %S A346756 18,54,36,18,594,198,792,594,594,792,792,396,396,594,594,198,198,198, %T A346756 7992,180,270,2268,540,8532,810,6804,1908,7902,360,2358,630,2718,1908, %U A346756 5904,1998,7992,90,6084,8172,8262,8442,2538,450,8532,7632,7812,7902,2088,270 %N A346756 Lesser emirps (A109308) subtracted from their reversals. %H A346756 Robert Israel, <a href="/A346756/b346756.txt">Table of n, a(n) for n = 1..10000</a> %H A346756 Carlos Rivera, <a href="http://www.primepuzzles.net/puzzles/puzz_020.htm">Puzzle 20. Reversible Primes</a>, The Prime Puzzles and Problems Connection. %F A346756 a(n) = reverse(A109308(n)) - A109308(n). %e A346756 31 - 13 = 18, 71 - 17 = 54, 73 - 37 = 36 (distance between lesser emirps and their reversals). %p A346756 rev:= proc(n) local L,i; %p A346756 L:= convert(n,base,10); %p A346756 add(L[-i]*10^(i-1),i=1..nops(L)); %p A346756 end proc: %p A346756 f:= proc(p) local r; %p A346756 if not isprime(p) then return NULL fi; %p A346756 r:= rev(p); %p A346756 if r > p and isprime(r) then r-p else NULL fi %p A346756 end proc: %p A346756 map(f, [seq(i,i=11 .. 10^4, 2)]); # _Robert Israel_, Dec 28 2023 %t A346756 f[n_] := IntegerReverse[n] - n; Map[f, Select[Range[1500], f[#] > 0 && PrimeQ[#] && PrimeQ @ IntegerReverse[#] &]] (* _Amiram Eldar_, Sep 08 2021 *) %o A346756 (PARI) rev(p) = fromdigits(Vecrev(digits(p))); \\ A004086 %o A346756 lista(nn) = {my(list = List()); forprime (p=1, nn, my(q=rev(p)); if ((q>p) && isprime(q), listput(list, q-p));); Vec(list);} \\ _Michel Marcus_, Sep 07 2021 %o A346756 (Python) %o A346756 from sympy import isprime, nextprime %o A346756 def aupton(terms): %o A346756 alst, p = [], 2 %o A346756 while len(alst) < terms: %o A346756 revp = int(str(p)[::-1]) %o A346756 if p < revp and isprime(revp): %o A346756 alst.append(revp - p) %o A346756 p = nextprime(p) %o A346756 return alst %o A346756 print(aupton(49)) # _Michael S. Branicky_, Sep 08 2021 %Y A346756 Cf. A004086, A006567, A109308. %K A346756 nonn,base,look %O A346756 1,1 %A A346756 _George Bull_, Aug 20 2021 %E A346756 Better name and more terms from _Jon E. Schoenfield_, Aug 20 2021