This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A346759 #12 Dec 28 2023 17:35:59 %S A346759 0,1,2,5,6,12,12,21,22,32,30,52,42,62,64,85,72,113,90,136,124,152,132, %T A346759 212,162,212,204,262,210,324,240,341,304,362,324,477,342,452,424,552, %U A346759 420,624,462,640,590,662,552,852,612,813,724,892,702,1024,792,1062,904,1052,870,1364 %N A346759 a(n) = Sum_{d|n} floor(d^2/4). %C A346759 Inverse Moebius transform of quarter-squares (A002620). %H A346759 Robert Israel, <a href="/A346759/b346759.txt">Table of n, a(n) for n = 1..10000</a> %F A346759 G.f.: Sum_{k>=1} x^(2*k) / ((1 + x^k) * (1 - x^k)^3). %F A346759 a(n) = (A001157(n) - A001227(n)) / 4. %p A346759 f:= proc(n) local d; %p A346759 add(floor(d^2/4),d=numtheory:-divisors(n)) %p A346759 end proc: %p A346759 map(f, [$1..100]); # _Robert Israel_, Dec 28 2023 %t A346759 Table[Sum[Floor[d^2/4], {d, Divisors[n]}], {n, 1, 60}] %t A346759 nmax = 60; CoefficientList[Series[Sum[x^(2 k)/((1 + x^k) (1 - x^k)^3), {k, 1, nmax}], {x, 0, nmax}], x] // Rest %o A346759 (PARI) a(n) = sumdiv(n, d, d^2\4); \\ _Michel Marcus_, Aug 03 2021 %Y A346759 Cf. A001157, A001227, A002620, A086670, A346758. %K A346759 nonn,look %O A346759 1,3 %A A346759 _Ilya Gutkovskiy_, Aug 02 2021