This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A346795 #22 Oct 09 2021 06:30:34 %S A346795 1,1,2,1,3,1,2,4,1,3,5,1,2,3,6,1,7,1,2,4,8,1,3,7,9,1,2,3,5,6,10,1,11, %T A346795 1,2,3,4,6,12,1,13,1,2,7,14,1,3,5,15,1,2,4,8,16,1,3,5,15,17,1,2,3,6,7, %U A346795 9,14,18,1,19,1,2,3,4,5,6,10,12,20,1,7,21 %N A346795 Irregular triangle T(n, k), n > 0, k = 1..A091220(n), read by rows; the n-th row gives, in ascending order, the distinct integers k such that A048720(k, m) = n for some m. %C A346795 The n-th row corresponds to the divisors of the n-th GF(2)[X]-polynomial. %C A346795 The greatest value both in the n-th row and in the k-th row corresponds to A091255(n, k). %C A346795 The index of the first row containing both n and k corresponds to A091256(n, k). %H A346795 Rémy Sigrist, <a href="/A346795/b346795.txt">Table of n, a(n) for n = 1..9228</a> (first 1024 rows flattened) %H A346795 Rémy Sigrist, <a href="/A346795/a346795.gp.txt">PARI program for A346795</a> %H A346795 <a href="/index/Ge#GF2X">Index entries for sequences operating on GF(2)[X]-polynomials</a> %F A346795 T(n, 1) = 1. %F A346795 T(n, A091220(n)) = n. %F A346795 Sum_{k = 1..A091220(n)} T(n, k) = A280493(n). %F A346795 T(n, 1) XOR ... XOR T(n, A091220(n)) = A178908(n) (where XOR denotes the bitwise XOR operator). %e A346795 The triangle starts: %e A346795 1: [1] %e A346795 2: [1, 2] %e A346795 3: [1, 3] %e A346795 4: [1, 2, 4] %e A346795 5: [1, 3, 5] %e A346795 6: [1, 2, 3, 6] %e A346795 7: [1, 7] %e A346795 8: [1, 2, 4, 8] %e A346795 9: [1, 3, 7, 9] %e A346795 10: [1, 2, 3, 5, 6, 10] %e A346795 11: [1, 11] %e A346795 12: [1, 2, 3, 4, 6, 12] %e A346795 13: [1, 13] %e A346795 14: [1, 2, 7, 14] %e A346795 15: [1, 3, 5, 15] %o A346795 (PARI) See Links section. %Y A346795 Cf. A048720, A091220, A091255, A091256, A091257, A178908, A280493, A348135. %K A346795 nonn,tabf %O A346795 1,3 %A A346795 _Rémy Sigrist_, Sep 29 2021