cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A346803 Numbers that are the sum of nine squares in ten or more ways.

This page as a plain text file.
%I A346803 #15 May 10 2024 08:51:59
%S A346803 63,65,68,71,72,74,75,77,78,79,80,81,82,83,84,85,86,87,88,89,90,91,92,
%T A346803 93,94,95,96,97,98,99,100,101,102,103,104,105,106,107,108,109,110,111,
%U A346803 112,113,114,115,116,117,118,119,120,121,122,123,124,125,126,127
%N A346803 Numbers that are the sum of nine squares in ten or more ways.
%H A346803 Sean A. Irvine, <a href="/A346803/b346803.txt">Table of n, a(n) for n = 1..10000</a>
%H A346803 <a href="/index/Rec#order_02">Index entries for linear recurrences with constant coefficients</a>, signature (2,-1).
%F A346803 From _Chai Wah Wu_, May 09 2024: (Start)
%F A346803 All integers >= 77 are terms. Proof: since 246 can be written as the sum of 4 positive squares in 10 ways (see A025428) and any integer >= 34 can be written as a sum of 5 positive squares (see A025429), any integer >= 280 can be written as a sum of 9 positive squares in 10 or more ways. Integers from 77 to 279 are terms by inspection.
%F A346803 a(n) = 2*a(n-1) - a(n-2) for n > 9.
%F A346803 G.f.: x*(-x^8 + x^7 - x^6 + x^5 - 2*x^4 + x^2 - 61*x + 63)/(x - 1)^2. (End)
%e A346803 65 = 1^2 + 1^2 + 1^2 + 1^2 + 1^2 + 1^2 + 1^2 + 3^2 + 7^2
%e A346803    = 1^2 + 1^2 + 1^2 + 1^2 + 1^2 + 2^2 + 2^2 + 4^2 + 6^2
%e A346803    = 1^2 + 2^2 + 2^2 + 2^2 + 2^2 + 2^2 + 2^2 + 2^2 + 6^2
%e A346803    = 1^2 + 1^2 + 1^2 + 1^2 + 1^2 + 1^2 + 3^2 + 5^2 + 5^2
%e A346803    = 1^2 + 1^2 + 1^2 + 2^2 + 2^2 + 2^2 + 3^2 + 4^2 + 5^2
%e A346803    = 1^2 + 1^2 + 1^2 + 1^2 + 3^2 + 3^2 + 3^2 + 3^2 + 5^2
%e A346803    = 1^2 + 1^2 + 1^2 + 1^2 + 2^2 + 3^2 + 4^2 + 4^2 + 4^2
%e A346803    = 2^2 + 2^2 + 2^2 + 2^2 + 2^2 + 2^2 + 3^2 + 4^2 + 4^2
%e A346803    = 1^2 + 2^2 + 2^2 + 2^2 + 3^2 + 3^2 + 3^2 + 3^2 + 4^2
%e A346803    = 1^2 + 1^2 + 3^2 + 3^2 + 3^2 + 3^2 + 3^2 + 3^2 + 3^2
%e A346803 so 65 is a term.
%o A346803 (Python)
%o A346803 from itertools import combinations_with_replacement as cwr
%o A346803 from collections import defaultdict
%o A346803 keep = defaultdict(lambda: 0)
%o A346803 power_terms = [x**2 for x in range(1, 1000)]
%o A346803 for pos in cwr(power_terms, 9):
%o A346803     tot = sum(pos)
%o A346803     keep[tot] += 1
%o A346803     rets = sorted([k for k, v in keep.items() if v >= 10])
%o A346803     for x in range(len(rets)):
%o A346803         print(rets[x])
%o A346803 (Python)
%o A346803 def A346803(n): return (63, 65, 68, 71, 72, 74, 75)[n-1] if n<8 else n+69 # _Chai Wah Wu_, May 09 2024
%Y A346803 Cf. A025428, A025429, A345497, A345549, A346808.
%K A346803 nonn
%O A346803 1,1
%A A346803 _David Consiglio, Jr._, Aug 04 2021