This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A346807 #13 May 10 2024 02:26:29 %S A346807 58,61,64,66,67,69,70,72,73,74,75,76,77,78,79,80,81,82,83,84,85,86,87, %T A346807 88,89,90,91,92,93,94,95,96,97,98,99,100,101,102,103,104,105,106,107, %U A346807 108,109,110,111,112,113,114,115,116,117,118,119,120,121,122,123 %N A346807 Numbers that are the sum of ten squares in eight or more ways. %H A346807 Sean A. Irvine, <a href="/A346807/b346807.txt">Table of n, a(n) for n = 1..10000</a> %F A346807 a(n) = n + 64 for n >= 8 (conjectured). - _Chai Wah Wu_, Dec 05 2023 %e A346807 61 = 1^2 + 1^2 + 1^2 + 1^2 + 1^2 + 1^2 + 1^2 + 1^2 + 2^2 + 7^2 %e A346807 = 1^2 + 1^2 + 1^2 + 1^2 + 1^2 + 1^2 + 1^2 + 3^2 + 3^2 + 6^2 %e A346807 = 1^2 + 1^2 + 1^2 + 1^2 + 1^2 + 1^2 + 1^2 + 2^2 + 5^2 + 5^2 %e A346807 = 1^2 + 1^2 + 1^2 + 1^2 + 2^2 + 2^2 + 2^2 + 2^2 + 4^2 + 5^2 %e A346807 = 1^2 + 1^2 + 1^2 + 1^2 + 1^2 + 2^2 + 3^2 + 3^2 + 3^2 + 5^2 %e A346807 = 2^2 + 2^2 + 2^2 + 2^2 + 2^2 + 2^2 + 2^2 + 2^2 + 2^2 + 5^2 %e A346807 = 1^2 + 1^2 + 1^2 + 1^2 + 1^2 + 2^2 + 2^2 + 4^2 + 4^2 + 4^2 %e A346807 = 1^2 + 2^2 + 2^2 + 2^2 + 2^2 + 2^2 + 2^2 + 2^2 + 4^2 + 4^2 %e A346807 = 1^2 + 1^2 + 2^2 + 2^2 + 2^2 + 2^2 + 3^2 + 3^2 + 3^2 + 4^2 %e A346807 = 1^2 + 1^2 + 1^2 + 2^2 + 3^2 + 3^2 + 3^2 + 3^2 + 3^2 + 3^2 %e A346807 so 61 is a term. %o A346807 (Python) %o A346807 from itertools import combinations_with_replacement as cwr %o A346807 from collections import defaultdict %o A346807 keep = defaultdict(lambda: 0) %o A346807 power_terms = [x**2 for x in range(1, 1000)] %o A346807 for pos in cwr(power_terms, 10): %o A346807 tot = sum(pos) %o A346807 keep[tot] += 1 %o A346807 rets = sorted([k for k, v in keep.items() if v >= 8]) %o A346807 for x in range(len(rets)): %o A346807 print(rets[x]) %Y A346807 Cf. A025434, A345505, A345556, A346806. %K A346807 nonn %O A346807 1,1 %A A346807 _David Consiglio, Jr._, Aug 04 2021