cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A346831 Table read by rows, coefficients of the characteristic polynomials of the tangent matrices.

This page as a plain text file.
%I A346831 #27 Apr 15 2024 09:44:47
%S A346831 1,0,1,-1,0,1,2,-1,-2,1,1,0,-6,0,1,4,9,-4,-10,0,1,-1,0,15,0,-15,0,1,
%T A346831 14,-1,-46,19,34,-19,-2,1,1,0,-28,0,70,0,-28,0,1,40,81,-88,-196,56,
%U A346831 150,-8,-36,0,1,-1,0,45,0,-210,0,210,0,-45,0,1
%N A346831 Table read by rows, coefficients of the characteristic polynomials of the tangent matrices.
%C A346831 The tangent matrix M(n, k) is an N X N matrix defined with h = floor((N+1)/2) as:
%C A346831    M[n - k, k + 1] = if n < h then 1 otherwise -1,
%C A346831    M[N - n + k + 1, N - k] = if n < N - h then -1 otherwise 1,
%C A346831    for n in [1..N-1] and for k in [0..n-1], and 0 in the main antidiagonal.
%C A346831 The name 'tangent matrix' derives from M(n, k) = signum(tan(Pi*(n + k)/(N + 1))) whenever the right side of this equation is defined.
%F A346831 The rows with even index equal those of A135670.
%F A346831 The determinants of tangent matrices with even dimension are A152011.
%e A346831 Table starts:
%e A346831 [0]  1;
%e A346831 [1]  0,  1;
%e A346831 [2] -1,  0,   1;
%e A346831 [3]  2, -1,  -2,    1;
%e A346831 [4]  1,  0,  -6,    0,   1;
%e A346831 [5]  4,  9,  -4,  -10,   0,   1;
%e A346831 [6] -1,  0,  15,    0, -15,   0,   1;
%e A346831 [7] 14, -1, -46,   19,  34, -19,  -2,   1;
%e A346831 [8]  1,  0, -28,    0,  70,   0, -28,   0, 1;
%e A346831 [9] 40, 81, -88, -196,  56, 150,  -8, -36, 0, 1.
%e A346831 .
%e A346831 The first few tangent matrices:
%e A346831 1       2          3              4                  5
%e A346831 ---------------------------------------------------------------
%e A346831 0;   -1  0;    1  -1  0;    1  -1  -1   0;   1   1  -1  -1   0;
%e A346831       0  1;   -1   0  1;   -1  -1   0   1;   1  -1  -1   0   1;
%e A346831                0   1  1;   -1   0   1   1;  -1  -1   0   1   1;
%e A346831                             0   1   1  -1;  -1   0   1   1   1;
%e A346831                                              0   1   1   1  -1;
%p A346831 TangentMatrix := proc(N) local M, H, n, k;
%p A346831    M := Matrix(N, N); H := iquo(N + 1, 2);
%p A346831    for n from 1 to N - 1 do for k from 0 to n - 1 do
%p A346831        M[n - k, k + 1] := `if`(n < H, 1, -1);
%p A346831        M[N - n + k + 1, N - k] := `if`(n < N - H, -1, 1);
%p A346831 od od; M end:
%p A346831 A346831Row := proc(n) if n = 0 then return 1 fi;
%p A346831    LinearAlgebra:-CharacteristicPolynomial(TangentMatrix(n), x);
%p A346831    seq(coeff(%, x, k), k = 0..n) end:
%p A346831 seq(A346831Row(n), n = 0..10);
%t A346831 TangentMatrix[N_] := Module[{M, H, n, k},
%t A346831    M = Array[0&, {N, N}]; H = Quotient[N + 1, 2];
%t A346831    For[n = 1, n <= N - 1, n++, For[k = 0, k <= n - 1, k++,
%t A346831       M[[n - k, k + 1]] = If[n < H, 1, -1];
%t A346831       M[[N - n + k + 1, N - k]] = If[n < N - H, -1, 1]]]; M];
%t A346831 A346831Row[n_] := Module[{c}, If[n == 0,  Return[{1}]];
%t A346831 c = CharacteristicPolynomial[TangentMatrix[n], x];
%t A346831 (-1)^n*CoefficientList[c, x]];
%t A346831 Table[A346831Row[n], {n, 0, 10}] // Flatten (* _Jean-François Alcover_, Apr 15 2024, after _Peter Luschny_ *)
%o A346831 (Julia)
%o A346831 using AbstractAlgebra
%o A346831 function TangentMatrix(N)
%o A346831     M = zeros(ZZ, N, N)
%o A346831     H = div(N + 1, 2)
%o A346831     for n in 1:N - 1
%o A346831         for k in 0:n - 1
%o A346831             M[n - k, k + 1] = n < H ? 1 : -1
%o A346831             M[N - n + k + 1, N - k] = n < N - H ? -1 : 1
%o A346831         end
%o A346831     end
%o A346831 M end
%o A346831 function A346831Row(n)
%o A346831     n == 0 && return [ZZ(1)]
%o A346831     R, x = PolynomialRing(ZZ, "x")
%o A346831     S = MatrixSpace(ZZ, n, n)
%o A346831     M = TangentMatrix(n)
%o A346831     c = charpoly(R, S(M))
%o A346831     collect(coefficients(c))
%o A346831 end
%o A346831 for n in 0:9 println(A346831Row(n)) end
%Y A346831 Cf. A135670, A152011, A346837 (generalized tangent matrix).
%K A346831 sign,tabl
%O A346831 0,7
%A A346831 _Peter Luschny_, Sep 11 2021