cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A346837 Table read by rows, coefficients of the determinant polynomials of the generalized tangent matrices.

This page as a plain text file.
%I A346837 #15 Apr 15 2024 09:43:53
%S A346837 1,0,1,-1,0,-1,-2,-1,0,-1,1,0,6,0,1,-4,1,12,6,0,1,-1,0,-15,0,-15,0,-1,
%T A346837 -14,-17,12,1,-30,-15,0,-1,1,0,28,0,70,0,28,0,1,-40,-63,72,156,40,6,
%U A346837 56,28,0,1
%N A346837 Table read by rows, coefficients of the determinant polynomials of the generalized tangent matrices.
%C A346837 The generalized tangent matrix M(n, k) is an N X N matrix defined for n in [1..N-1] and for k in [0..n-1] with h = floor((N+1)/2) as:
%C A346837    M[n - k, k + 1] = if n < h then 1 otherwise -1,
%C A346837    M[N - n + k + 1, N - k] = if n < N - h then -1 otherwise 1,
%C A346837 and the indeterminate x in the main antidiagonal.
%C A346837 The tangent matrix M(n, k) as defined in A346831 is the special case which arises from setting x = 0. The determinant of a generalized tangent matrix M is a polynomial which we call the determinant polynomial of M.
%e A346837 Table starts:
%e A346837 [0]   1;
%e A346837 [1]   0,   1;
%e A346837 [2]  -1,   0,  -1;
%e A346837 [3]  -2,  -1,   0,  -1;
%e A346837 [4]   1,   0,   6,   0,   1;
%e A346837 [5]  -4,   1,  12,   6,   0,   1;
%e A346837 [6]  -1,   0, -15,   0, -15,   0, -1;
%e A346837 [7] -14, -17,  12,   1, -30, -15,  0, -1;
%e A346837 [8]   1,   0,  28,   0,  70,   0, 28,  0, 1;
%e A346837 [9] -40, -63,  72, 156,  40,   6, 56, 28, 0, 1.
%e A346837 .
%e A346837 The first few generalized tangent matrices:
%e A346837 1       2          3              4                  5
%e A346837 ---------------------------------------------------------------
%e A346837 x;   -1  x;    1  -1  x;    1  -1  -1   x;   1   1  -1  -1   x;
%e A346837       x  1;   -1   x  1;   -1  -1   x   1;   1  -1  -1   x   1;
%e A346837                x   1  1;   -1   x   1   1;  -1  -1   x   1   1;
%e A346837                             x   1   1  -1;  -1   x   1   1   1;
%e A346837                                              x   1   1   1  -1;
%p A346837 GeneralizedTangentMatrix := proc(N) local M, H, n, k;
%p A346837    M := Matrix(N, N); H := iquo(N + 1, 2);
%p A346837    for n from 1 to N - 1 do for k from 0 to n - 1 do
%p A346837        M[n - k, k + 1] := `if`(n < H, 1, -1);
%p A346837        M[N - n + k + 1, N - k] := `if`(n < N - H, -1, 1);
%p A346837 od od; for k from 1 to N do M[k, N-k+1] := x od;
%p A346837 M end:
%p A346837 A346837Row := proc(n) if n = 0 then return 1 fi;
%p A346837    GeneralizedTangentMatrix(n):
%p A346837    LinearAlgebra:-Determinant(%);
%p A346837    seq(coeff(%, x, k), k = 0..n) end:
%p A346837 seq(A346837Row(n), n = 0..9);
%t A346837 GeneralizedTangentMatrix[N_] := Module[{M, H, n, k},
%t A346837    M = Array[0&, {N, N}]; H = Quotient[N + 1, 2];
%t A346837    For[n = 1, n <= N - 1, n++, For[k = 0, k <= n - 1, k++,
%t A346837       M[[n - k, k + 1]] = If[n < H, 1, -1];
%t A346837       M[[N - n + k + 1, N - k]] = If[n < N - H, -1, 1]]];
%t A346837       For[k = 1, k <= N, k++, M[[k, N - k + 1]] = x]; M];
%t A346837 A346837Row[n_] := If[n == 0, {1}, CoefficientList[ Det[
%t A346837    GeneralizedTangentMatrix[n]], x]];
%t A346837 Table[A346837Row[n], {n, 0, 9}] // Flatten (* _Jean-François Alcover_, Apr 15 2024, after _Peter Luschny_ *)
%Y A346837 Cf. A011782 (row sums modulo sign), A347596 (alternating row sums), A346831.
%K A346837 sign,tabl
%O A346837 0,7
%A A346837 _Peter Luschny_, Sep 11 2021