cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A346846 E.g.f.: log(1 + x) / (1 - x)^4.

This page as a plain text file.
%I A346846 #9 Aug 06 2021 04:40:38
%S A346846 1,7,50,386,3304,31176,323280,3656880,44890560,594463680,8453128320,
%T A346846 128473430400,2079045964800,35692494566400,648044312832000,
%U A346846 12406994498304000,249834635947008000,5278539223415808000,116768100285720576000,2699047267616544768000,65071515565786447872000
%N A346846 E.g.f.: log(1 + x) / (1 - x)^4.
%F A346846 a(n) = n! * Sum_{k=1..n} (-1)^(k+1) * binomial(n-k+3,3) / k.
%F A346846 a(n) ~ log(2) * n^3 * n! / 6. - _Vaclav Kotesovec_, Aug 06 2021
%t A346846 nmax = 21; CoefficientList[Series[Log[1 + x]/(1 - x)^4, {x, 0, nmax}], x] Range[0, nmax]! // Rest
%t A346846 Table[n! Sum[(-1)^(k + 1) Binomial[n - k + 3, 3]/k , {k, 1, n}], {n, 1, 21}]
%o A346846 (PARI) my(x='x+O('x^25)); Vec(serlaplace(log(1+x)/(1-x)^4)) \\ _Michel Marcus_, Aug 06 2021
%Y A346846 Cf. A000292, A001716, A024167, A109792, A346845, A346847.
%K A346846 nonn
%O A346846 1,2
%A A346846 _Ilya Gutkovskiy_, Aug 05 2021