cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A346847 E.g.f.: log(1 + x) / (1 - x)^5.

This page as a plain text file.
%I A346847 #8 Aug 06 2021 04:41:17
%S A346847 1,9,77,694,6774,71820,826020,10265040,137275920,1967222880,
%T A346847 30092580000,489584390400,8443643040000,153903497126400,
%U A346847 2956596769728000,59712542813952000,1264947863784192000,28047600771531264000,649672514944814592000,15692497566512836608000,394613964462556016640000
%N A346847 E.g.f.: log(1 + x) / (1 - x)^5.
%F A346847 a(n) = n! * Sum_{k=1..n} (-1)^(k+1) * binomial(n-k+4,4) / k.
%F A346847 a(n) ~ log(2) * n^4 * n! / 24. - _Vaclav Kotesovec_, Aug 06 2021
%t A346847 nmax = 21; CoefficientList[Series[Log[1 + x]/(1 - x)^5, {x, 0, nmax}], x] Range[0, nmax]! // Rest
%t A346847 Table[n! Sum[(-1)^(k + 1) Binomial[n - k + 4, 4]/k , {k, 1, n}], {n, 1, 21}]
%o A346847 (PARI) my(x='x+O('x^25)); Vec(serlaplace(log(1+x)/(1-x)^5)) \\ _Michel Marcus_, Aug 06 2021
%Y A346847 Cf. A000332, A001721, A024167, A109792, A346845, A346846.
%K A346847 nonn
%O A346847 1,2
%A A346847 _Ilya Gutkovskiy_, Aug 05 2021