cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A346864 Irregular triangle read by rows in which row n lists the row A014105(n) of A237591, n >= 1.

This page as a plain text file.
%I A346864 #56 Jan 15 2025 08:38:13
%S A346864 2,1,6,2,1,1,11,4,3,1,1,1,19,6,4,2,2,1,1,1,28,10,5,3,3,2,1,1,1,1,40,
%T A346864 13,7,5,3,2,2,2,1,1,1,1,53,18,10,5,4,3,3,2,1,2,1,1,1,1,69,23,12,7,5,4,
%U A346864 3,2,2,2,2,1,1,1,1,1,86,29,15,9,6,5,4,2,3,2,2,1,2,1,1,1,1,1
%N A346864 Irregular triangle read by rows in which row n lists the row A014105(n) of A237591, n >= 1.
%C A346864 The characteristic shape of the symmetric representation of sigma(A014105(n)) consists in that in the main diagonal of the diagram the smallest Dyck path has a peak and the largest Dyck path has a valley.
%C A346864 So knowing this characteristic shape we can know if a number is a second hexagonal number (or not) just by looking at the diagram, even ignoring the concept of second hexagonal number.
%C A346864 Therefore we can see a geometric pattern of the distribution of the second hexagonal numbers in the stepped pyramid described in A245092.
%C A346864 T(n,k) is also the length of the k-th line segment of the largest Dyck path of the symmetric representation of sigma(A014105(n)), from the border to the center, hence the sum of the n-th row of triangle is equal to A014105(n).
%C A346864 T(n,k) is also the difference between the total number of partitions of all positive integers <= n-th second hexagonal number into exactly k consecutive parts, and the total number of partitions of all positive integers <= n-th second hexagonal number into exactly k + 1 consecutive parts.
%C A346864 1 together with the first column gives A317186. - _Michel Marcus_, Jan 12 2025
%e A346864 Triangle begins:
%e A346864    2,  1;
%e A346864    6,  2,  1, 1;
%e A346864   11,  4,  3, 1, 1, 1;
%e A346864   19,  6,  4, 2, 2, 1, 1, 1;
%e A346864   28, 10,  5, 3, 3, 2, 1, 1, 1, 1;
%e A346864   40, 13,  7, 5, 3, 2, 2, 2, 1, 1, 1, 1;
%e A346864   53, 18, 10, 5, 4, 3, 3, 2, 1, 2, 1, 1, 1, 1;
%e A346864   69, 23, 12, 7, 5, 4, 3, 2, 2, 2, 2, 1, 1, 1, 1, 1;
%e A346864   86, 29, 15, 9, 6, 5, 4, 2, 3, 2, 2, 1, 2, 1, 1, 1, 1, 1;
%e A346864 ...
%e A346864 Illustration of initial terms:
%e A346864 Column h gives the n-th second hexagonal number (A014105).
%e A346864 Column S gives the sum of the divisors of the second hexagonal numbers which equals the area (and the number of cells) of the associated diagram.
%e A346864 --------------------------------------------------------------------------------------
%e A346864   n   h   S   Diagram
%e A346864 --------------------------------------------------------------------------------------
%e A346864                   _             _                     _                             _
%e A346864                  | |           | |                   | |                           | |
%e A346864               _ _|_|           | |                   | |                           | |
%e A346864   1   3   4  |_ _|1            | |                   | |                           | |
%e A346864                2               | |                   | |                           | |
%e A346864                             _ _| |                   | |                           | |
%e A346864                            |  _ _|                   | |                           | |
%e A346864                         _ _|_|                       | |                           | |
%e A346864                        |  _|1                        | |                           | |
%e A346864               _ _ _ _ _| | 1                         | |                           | |
%e A346864   2  10  18  |_ _ _ _ _ _|2                          | |                           | |
%e A346864                    6                          _ _ _ _|_|                           | |
%e A346864                                              | |                                   | |
%e A346864                                             _| |                                   | |
%e A346864                                            |  _|                                   | |
%e A346864                                         _ _|_|                                     | |
%e A346864                                     _ _|  _|1                                      | |
%e A346864                                    |_ _ _|1 1                                      | |
%e A346864                                    |  3                               _ _ _ _ _ _ _| |
%e A346864                                    |4                                |    _ _ _ _ _ _|
%e A346864               _ _ _ _ _ _ _ _ _ _ _|                                 |   |
%e A346864   3  21  32  |_ _ _ _ _ _ _ _ _ _ _|                              _ _|   |
%e A346864                        11                                        |       |
%e A346864                                                                 _|    _ _|
%e A346864                                                                |     |
%e A346864                                                             _ _|    _|
%e A346864                                                         _ _|      _|
%e A346864                                                        |        _|1
%e A346864                                                   _ _ _|    _ _|1 1
%e A346864                                                  |         | 2
%e A346864                                                  |  _ _ _ _|2
%e A346864                                                  | |   4
%e A346864                                                  | |
%e A346864                                                  | |6
%e A346864                                                  | |
%e A346864               _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _| |
%e A346864   4  36  91  |_ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _|
%e A346864                                19
%e A346864 .
%o A346864 (PARI) row(n) = my(m=n*(2*n + 1)); vector((sqrtint(8*m+1)-1)\2, k, ceil((m+1)/k - (k+1)/2) - ceil((m+1)/(k+1) - (k+2)/2)); \\ _Michel Marcus_, Jan 12 2025
%Y A346864 Row sums give A014105, n >= 1.
%Y A346864 Row lengths give A005843.
%Y A346864 For the characteristic shape of sigma(A000040(n)) see A346871.
%Y A346864 For the characteristic shape of sigma(A000079(n)) see A346872.
%Y A346864 For the characteristic shape of sigma(A000217(n)) see A346873.
%Y A346864 For the visualization of Mersenne numbers A000225 see A346874.
%Y A346864 For the characteristic shape of sigma(A000384(n)) see A346875.
%Y A346864 For the characteristic shape of sigma(A000396(n)) see A346876.
%Y A346864 For the characteristic shape of sigma(A008588(n)) see A224613.
%Y A346864 For the characteristic shape of sigma(A174973(n)) see A317305.
%Y A346864 Cf. A000203, A237591, A237593, A245092, A249351, A262626, A317186.
%K A346864 nonn,tabf
%O A346864 1,1
%A A346864 _Omar E. Pol_, Aug 17 2021