This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A346869 #33 Jul 29 2023 14:24:04 %S A346869 0,0,0,0,3,3,3,11,11,11,21,21,26,38,38,38,52,64,64,80,80,80,112,112, %T A346869 119,139,139,155,177,177,177,217,235,235,261,261,261,309,327,327,366, %U A346869 366,388,420,420,440,474,498,498,554,554,554,640,640,640,680,680,708,772,796 %N A346869 Sum of all divisors, except the smallest and the largest of every number, of the first n odd numbers. %C A346869 Partial sums of the odd-indexed terms of Chowla's function A048050. %C A346869 a(n) has a symmetric representation. %p A346869 a:= proc(n) option remember; `if`(n=1, 0, %p A346869 a(n-1)+numtheory[sigma](2*n-1)-2*n) %p A346869 end: %p A346869 seq(a(n), n=1..60); # _Alois P. Heinz_, Aug 19 2021 %t A346869 s[1] = 0; s[n_] := DivisorSigma[1, 2*n - 1] - 2*n; Accumulate @ Array[s, 50] (* _Amiram Eldar_, Aug 19 2021 *) %t A346869 Accumulate[Join[{0},Table[DivisorSigma[1,n]-n-1,{n,3,151,2}]]] (* _Harvey P. Dale_, Jul 29 2023 *) %o A346869 (Python) %o A346869 from sympy import divisors %o A346869 from itertools import accumulate %o A346869 def A346879(n): return sum(divisors(2*n-1)[1:-1]) %o A346869 def aupton(nn): return list(accumulate(A346879(n) for n in range(1, nn+1))) %o A346869 print(aupton(60)) # _Michael S. Branicky_, Aug 19 2021 %Y A346869 Partial sums of A346879. %Y A346869 Cf. A000203, A005408, A008438, A048050, A237593, A245092, A244049, A326123, A346870. %K A346869 nonn,easy %O A346869 1,5 %A A346869 _Omar E. Pol_, Aug 18 2021