cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A346870 Sum of all divisors, except the smallest and the largest of every number, of the first n positive even numbers.

This page as a plain text file.
%I A346870 #35 Nov 02 2023 16:19:56
%S A346870 0,2,7,13,20,35,44,58,78,99,112,147,162,189,230,260,279,333,354,403,
%T A346870 456,495,520,595,637,682,747,810,841,948,981,1043,1120,1177,1250,1372,
%U A346870 1411,1474,1563,1668,1711,1850,1895,1986,2129,2204,2253,2408,2480,2596,2709,2814
%N A346870 Sum of all divisors, except the smallest and the largest of every number, of the first n positive even numbers.
%C A346870 Partial sums of the even-indexed terms of Chowla's function A048050.
%C A346870 a(n) has a symmetric representation.
%H A346870 Amiram Eldar, <a href="/A346870/b346870.txt">Table of n, a(n) for n = 1..10000</a>
%F A346870 a(n) = (5*Pi^2/24 - 1) * n^2 + O(n*log(n)). - _Amiram Eldar_, May 15 2023
%p A346870 a:= proc(n) option remember; `if`(n=0, 0,
%p A346870       a(n-1)+numtheory[sigma](2*n)-1-2*n)
%p A346870     end:
%p A346870 seq(a(n), n=1..60);  # _Alois P. Heinz_, Aug 19 2021
%t A346870 s[n_] := DivisorSigma[1, 2*n] - 2*n - 1; Accumulate @ Array[s, 50] (* _Amiram Eldar_, Aug 19 2021 *)
%o A346870 (Python)
%o A346870 from sympy import divisors
%o A346870 from itertools import accumulate
%o A346870 def A346880(n): return sum(divisors(2*n)[1:-1])
%o A346870 def aupton(nn): return list(accumulate(A346880(n) for n in range(1, nn+1)))
%o A346870 print(aupton(52)) # _Michael S. Branicky_, Aug 19 2021
%o A346870 (Python)
%o A346870 from math import isqrt
%o A346870 def A346870(n): return (t:=isqrt(m:=n>>1))**2*(t+1) - sum((q:=m//k)*((k<<1)+q+1) for k in range(1,t+1))-3*((s:=isqrt(n))**2*(s+1) - sum((q:=n//k)*((k<<1)+q+1) for k in range(1,s+1))>>1)-n*(n+2) # _Chai Wah Wu_, Nov 02 2023
%Y A346870 Partial sums of A346880.
%Y A346870 Cf. A000203, A005843, A048050, A062731, A237593, A245092, A244049, A326124, A346869.
%K A346870 nonn,easy
%O A346870 1,2
%A A346870 _Omar E. Pol_, Aug 18 2021