cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A346871 Irregular triangle read by rows in which row n lists the row A000040(n) of A237591, n >= 1.

This page as a plain text file.
%I A346871 #49 Aug 26 2021 16:41:30
%S A346871 2,2,1,3,2,4,2,1,6,3,1,1,7,3,2,1,9,4,2,1,1,10,4,2,2,1,12,5,2,2,1,1,15,
%T A346871 6,3,2,1,1,1,16,6,3,2,2,1,1,19,7,4,2,2,1,1,1,21,8,4,2,2,2,1,1,22,8,4,
%U A346871 3,2,1,2,1,24,9,4,3,2,2,1,1,1,27,10,5,3,2,2,1,2,1
%N A346871 Irregular triangle read by rows in which row n lists the row A000040(n) of A237591, n >= 1.
%C A346871 The characteristic shape of the symmetric representation of sigma(prime(n)) consists in that the diagram contains exactly two regions (or parts) and each region is a rectangle (or bar), except for the first prime number (the 2) whose symmetric representation of sigma(2) consists of only one region which contains three cells.
%C A346871 So knowing this characteristic shape we can know if a number is prime (or not) just by looking at the diagram, even ignoring the concept of prime number.
%C A346871 Therefore we can see a geometric pattern of the exact distribution of prime numbers in the stepped pyramid described in A245092.
%C A346871 T(n,k) is the length of the k-th line segment of the largest Dyck path of the symmetric representation of sigma(prime(n)), from the border to the center, hence the sum of the n-th row of triangle is equal to A000040(n).
%C A346871 T(n,k) is also the difference between the total number of partitions of all positive integers <= n-th prime into exactly k consecutive parts, and the total number of partitions of all positive integers <= n-th prime into exactly k + 1 consecutive parts.
%e A346871 Triangle begins:
%e A346871    2;
%e A346871    2, 1;
%e A346871    3, 2;
%e A346871    4, 2, 1;
%e A346871    6, 3, 1, 1;
%e A346871    7, 3, 2, 1;
%e A346871    9, 4, 2, 1, 1;
%e A346871   10, 4, 2, 2, 1;
%e A346871   12, 5, 2, 2, 1, 1;
%e A346871   15, 6, 3, 2, 1, 1, 1;
%e A346871   16, 6, 3, 2, 2, 1, 1;
%e A346871   19, 7, 4, 2, 2, 1, 1, 1;
%e A346871   21, 8, 4, 2, 2, 2, 1, 1;
%e A346871   22, 8, 4, 3, 2, 1, 2, 1;
%e A346871   24, 9, 4, 3, 2, 2, 1, 1, 1;
%e A346871 ...
%e A346871 Illustration of initial terms:
%e A346871 Row 1:    _
%e A346871         _| |
%e A346871        |_ _|
%e A346871          2                         Semilength = 2
%e A346871 .
%e A346871 Row 2:      _
%e A346871            | |
%e A346871         _ _|_|
%e A346871        |_ _|1                      Semilength = 3
%e A346871          2
%e A346871 .
%e A346871 Row 3:          _
%e A346871                | |
%e A346871                | |
%e A346871               _|_|
%e A346871         _ _ _|                     Semilength = 5
%e A346871        |_ _ _|2
%e A346871           3
%e A346871 .
%e A346871 Row 4:              _
%e A346871                    | |
%e A346871                    | |
%e A346871                    | |
%e A346871                   _|_|
%e A346871                 _|
%e A346871         _ _ _ _| 1                 Semilength = 7
%e A346871        |_ _ _ _|2
%e A346871            4
%e A346871 .
%e A346871 Row 5:                         _
%e A346871                               | |
%e A346871                               | |
%e A346871                               | |
%e A346871                               | |
%e A346871                               | |
%e A346871                            _ _|_|
%e A346871                          _|
%e A346871                        _|1         Semilength = 11
%e A346871                       |1
%e A346871            _ _ _ _ _ _|
%e A346871           |_ _ _ _ _ _|3
%e A346871                 6
%e A346871 .
%e A346871 The area (also the number of cells) of the successive diagrams gives A008864.
%Y A346871 Row sums give A000040.
%Y A346871 For the characteristic shape of sigma(A000079(n)) see A346872.
%Y A346871 For the characteristic shape of sigma(A000217(n)) see A346873.
%Y A346871 For the visualization of Mersenne numbers A000225 see A346874.
%Y A346871 For the characteristic shape of sigma(A000384(n)) see A346875.
%Y A346871 For the characteristic shape of sigma(A000396(n)) see A346876.
%Y A346871 For the characteristic shape of sigma(A008588(n)) see A224613.
%Y A346871 Cf. A000203, A008864, A018252, A237591, A237593, A245092, A249351, A262626.
%K A346871 nonn,tabf
%O A346871 1,1
%A A346871 _Omar E. Pol_, Aug 06 2021