cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A346872 Irregular triangle read by rows in which row n lists the row 2^(n-1) of A237591, n >= 1.

This page as a plain text file.
%I A346872 #43 Mar 22 2025 04:39:58
%S A346872 1,2,3,1,5,2,1,9,3,2,1,1,17,6,3,2,2,1,1,33,11,6,4,2,2,2,1,2,1,65,22,
%T A346872 11,7,5,3,3,2,2,2,1,2,1,1,1,129,43,22,13,9,7,5,4,3,3,3,2,2,1,2,1,2,1,
%U A346872 1,1,1,1,257,86,43,26,18,12,10,8,6,5,4,4,3,3,3,2,3
%N A346872 Irregular triangle read by rows in which row n lists the row 2^(n-1) of A237591, n >= 1.
%C A346872 The characteristic shape of the symmetric representation of sigma(2^(n-1)) consists in that the diagram contains exactly one region (or part) and that region has width 1.
%C A346872 So knowing this characteristic shape we can know if a number is power of 2 or not just by looking at the diagram, even ignoring the concept of power of 2.
%C A346872 Therefore we can see a geometric pattern of the distribution of the powers of 2 in the stepped pyramid described in A245092.
%C A346872 For the definition of "width" see A249351.
%C A346872 T(n,k) is the length of the k-th line segment of the largest Dyck path of the symmetric representation of sigma(2^(n-1)), from the border to the center, hence the sum of the n-th row of triangle is equal to A000079(n-1).
%C A346872 T(n,k) is also the difference between the total number of partitions of all positive integers <= 2^(n-1) into exactly k consecutive parts, and the total number of partitions of all positive integers <= 2^(n-1) into exactly k + 1 consecutive parts.
%e A346872 Triangle begins:
%e A346872     1;
%e A346872     2;
%e A346872     3,  1;
%e A346872     5,  2,  1;
%e A346872     9,  3,  2,  1, 1;
%e A346872    17,  6,  3,  2, 2, 1, 1;
%e A346872    33, 11,  6,  4, 2, 2, 2, 1, 2, 1;
%e A346872    65, 22, 11,  7, 5, 3, 3, 2, 2, 2, 1, 2, 1, 1, 1;
%e A346872   129, 43, 22, 13, 9, 7, 5, 4, 3, 3, 3, 2, 2, 1, 2, 1, 2, 1, 1, 1, 1, 1;
%e A346872 ...
%e A346872 Illustration of initial terms:
%e A346872 .
%e A346872 Row 1:  _
%e A346872        |_|                              Semilength = 1
%e A346872         1
%e A346872 Row 2:    _
%e A346872         _| |
%e A346872        |_ _|
%e A346872          2                              Semilength = 2
%e A346872 .
%e A346872 Row 3:        _
%e A346872              | |
%e A346872             _| |
%e A346872         _ _|  _|
%e A346872        |_ _ _|1                         Semilength = 4
%e A346872           3
%e A346872 .
%e A346872 Row 4:                _
%e A346872                      | |
%e A346872                      | |
%e A346872                      | |
%e A346872                   _ _| |
%e A346872                 _|  _ _|
%e A346872                |  _|
%e A346872         _ _ _ _| | 1                    Semilength = 8
%e A346872        |_ _ _ _ _|2
%e A346872             5
%e A346872 .
%e A346872 Row 5:                                _
%e A346872                                      | |
%e A346872                                      | |
%e A346872                                      | |
%e A346872                                      | |
%e A346872                                      | |
%e A346872                                      | |
%e A346872                                      | |
%e A346872                                 _ _ _| |
%e A346872                                |  _ _ _|
%e A346872                               _| |
%e A346872                             _|  _|
%e A346872                         _ _|  _|        Semilength = 16
%e A346872                        |  _ _|1 1
%e A346872                        | | 2
%e A346872         _ _ _ _ _ _ _ _| |3
%e A346872        |_ _ _ _ _ _ _ _ _|
%e A346872                 9
%e A346872 .
%e A346872 The area (also the number of cells) of the successive diagrams gives the nonzero Mersenne numbers A000225.
%Y A346872 Row sums give A000079.
%Y A346872 Column 1 gives A094373.
%Y A346872 For the characteristic shape of sigma(A000040(n)) see A346871.
%Y A346872 For the characteristic shape of sigma(A000217(n)) see A346873.
%Y A346872 For the visualization of Mersenne numbers A000225 see A346874.
%Y A346872 For the characteristic shape of sigma(A000384(n)) see A346875.
%Y A346872 For the characteristic shape of sigma(A000396(n)) see A346876.
%Y A346872 For the characteristic shape of sigma(A008588(n)) see A224613.
%Y A346872 Cf. A000203, A000225, A237591, A237593, A245092, A249351, A262626.
%K A346872 nonn,tabf
%O A346872 1,2
%A A346872 _Omar E. Pol_, Aug 06 2021