This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A346873 #51 Feb 07 2023 06:01:51 %S A346873 1,2,1,4,1,1,6,2,1,1,8,3,2,1,1,11,4,3,1,1,1,15,5,3,2,1,1,1,19,6,4,2,2, %T A346873 1,1,1,23,8,5,2,2,2,1,1,1,28,10,5,3,3,2,1,1,1,1,34,11,6,4,3,2,2,1,1,1, %U A346873 1,40,13,7,5,3,2,2,2,1,1,1,1,46,16,8,5,4,2,3 %N A346873 Triangle read by rows in which row n lists the row A000217(n) of A237591, n >= 1. %C A346873 The characteristic shape of the symmetric representation of sigma(A000217(n)) consists in that in the main diagonal of the diagram the smallest Dyck path has a valley and the largest Dyck path has a peak, or vice versa, the smallest Dyck path has a peak and the largest Dyck path has valley. %C A346873 So knowing this characteristic shape we can know if a number is a triangular number (or not) just by looking at the diagram, even ignoring the concept of triangular number. %C A346873 Therefore we can see a geometric pattern of the distribution of the triangular numbers in the stepped pyramid described in A245092. %C A346873 T(n,k) is also the length of the k-th line segment of the largest Dyck path of the symmetric representation of sigma(A000217(n)), from the border to the center, hence the sum of the n-th row of triangle is equal to A000217(n). %C A346873 T(n,k) is also the difference between the total number of partitions of all positive integers <= n-th triangular number into exactly k consecutive parts, and the total number of partitions of all positive integers <= n-th triangular number into exactly k + 1 consecutive parts. %F A346873 T(n,k) = A237591(A000217(n),k). - _Omar E. Pol_, Feb 06 2023 %e A346873 Triangle begins: %e A346873 1; %e A346873 2, 1; %e A346873 4, 1, 1; %e A346873 6, 2, 1, 1; %e A346873 8, 3, 2, 1, 1; %e A346873 11, 4, 3, 1, 1, 1; %e A346873 15, 5, 3, 2, 1, 1, 1; %e A346873 19, 6, 4, 2, 2, 1, 1, 1; %e A346873 23, 8, 5, 2, 2, 2, 1, 1, 1; %e A346873 28, 10, 5, 3, 3, 2, 1, 1, 1, 1; %e A346873 34, 11, 6, 4, 3, 2, 2, 1, 1, 1, 1; %e A346873 40, 13, 7, 5, 3, 2, 2, 2, 1, 1, 1, 1; %e A346873 46, 16, 8, 5, 4, 2, 3, 1, 2, 1, 1, 1, 1; %e A346873 ... %e A346873 Illustration of initial terms: %e A346873 Column T gives the triangular numbers (A000217). %e A346873 Column S gives A074285, the sum of the divisors of the triangular numbers which equals the area (and the number of cells) of the associated diagram. %e A346873 ------------------------------------------------------------------------- %e A346873 n T S Diagram %e A346873 ------------------------------------------------------------------------- %e A346873 _ _ _ _ _ _ _ %e A346873 1 1 1 |_| | | | | | | | | | | | | %e A346873 1 _ _|_| | | | | | | | | | | %e A346873 2 3 4 |_ _| _ _| | | | | | | | | | %e A346873 2 1| _| | | | | | | | | %e A346873 _ _ _| _| _ _| | | | | | | | %e A346873 3 6 12 |_ _ _ _| 1 | _ _| | | | | | | %e A346873 4 1 _ _|_| | | | | | | %e A346873 | _|1 _ _ _|_| | | | | %e A346873 _ _ _ _ _| | 1 _ _| | | | | | %e A346873 4 10 18 |_ _ _ _ _ _|2 | _| | | | | %e A346873 6 _| _| _ _ _ _|_| | | %e A346873 |_ _|1 1 | | | | %e A346873 | 2 _| | | | %e A346873 _ _ _ _ _ _ _ _|4 | _| _ _ _ _ _| | %e A346873 3 15 24 |_ _ _ _ _ _ _ _| _ _|_| | _ _ _ _ _| %e A346873 8 _ _| _|1 | | %e A346873 |_ _ _|1 1 _ _| | %e A346873 | 3 _ _| _ _| %e A346873 |4 | _| %e A346873 _ _ _ _ _ _ _ _ _ _ _| _| _| %e A346873 4 21 32 |_ _ _ _ _ _ _ _ _ _ _| _ _ _| _|1 1 %e A346873 11 | _ _ _|2 %e A346873 | | 3 %e A346873 | | %e A346873 | |5 %e A346873 _ _ _ _ _ _ _ _ _ _ _ _ _ _| | %e A346873 5 28 56 |_ _ _ _ _ _ _ _ _ _ _ _ _ _ _| %e A346873 15 %e A346873 . %Y A346873 Row sums give A000217, n >= 1. %Y A346873 Column 1 gives A039823. %Y A346873 For the characteristic shape of sigma(A000040(n)) see A346871. %Y A346873 For the characteristic shape of sigma(A000079(n)) see A346872. %Y A346873 For the visualization of Mersenne numbers A000225 see A346874. %Y A346873 For the characteristic shape of sigma(A000384(n)) see A346875. %Y A346873 For the characteristic shape of sigma(A000396(n)) see A346876. %Y A346873 For the characteristic shape of sigma(A008588(n)) see A224613. %Y A346873 Cf. A000203, A074285, A237591, A237593, A245092, A249351, A262626. %K A346873 nonn,tabl %O A346873 1,2 %A A346873 _Omar E. Pol_, Aug 06 2021 %E A346873 Name corrected by _Omar E. Pol_, Feb 06 2023