cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A346875 Irregular triangle read by rows in which row n lists the row A000384(n) of A237591, n >= 1.

This page as a plain text file.
%I A346875 #39 Dec 10 2021 11:19:35
%S A346875 1,4,1,1,8,3,2,1,1,15,5,3,2,1,1,1,23,8,5,2,2,2,1,1,1,34,11,6,4,3,2,2,
%T A346875 1,1,1,1,46,16,8,5,4,2,3,1,2,1,1,1,1,61,20,11,6,5,3,3,2,2,2,1,1,1,1,1,
%U A346875 77,26,14,8,5,5,3,2,3,2,1,2,1,1,1,1,1,96,32,16
%N A346875 Irregular triangle read by rows in which row n lists the row A000384(n) of A237591, n >= 1.
%C A346875 The characteristic shape of the symmetric representation of sigma(A000384(n)) consists in that in the main diagonal of the diagram the smallest Dyck path has a valley and the largest Dyck path has a peak.
%C A346875 So knowing this we can know if a number is a hexagonal number (or not) just by looking at the diagram, even ignoring the concept of hexagonal number.
%C A346875 Therefore we can see a geometric pattern of the distribution of the hexagonal numbers in the stepped pyramid described in A245092.
%C A346875 T(n,k) is also the length of the k-th line segment of the largest Dyck path of the symmetric representation of sigma(A000384(n-1)), from the border to the center, hence the sum of the n-th row of triangle is equal to A000384(n-1).
%C A346875 T(n,k) is also the difference between the total number of partitions of all positive integers <= n-th hexagonal number into exactly k consecutive parts, and the total number of partitions of all positive integers <= n-th hexagonal number into exactly k + 1 consecutive parts.
%e A346875 Triangle begins:
%e A346875    1;
%e A346875    4,  1,  1;
%e A346875    8,  3,  2,  1, 1;
%e A346875   15,  5,  3,  2, 1, 1, 1;
%e A346875   23,  8,  5,  2, 2, 2, 1, 1, 1;
%e A346875   34, 11,  6,  4, 3, 2, 2, 1, 1, 1, 1;
%e A346875   46, 16,  8,  5, 4, 2, 3, 1, 2, 1, 1, 1, 1;
%e A346875   61, 20, 11,  6, 5, 3, 3, 2, 2, 2, 1, 1, 1, 1, 1;
%e A346875   77, 26, 14,  8, 5, 5, 3, 2, 3, 2, 1, 2, 1, 1, 1, 1, 1;
%e A346875   96, 32, 16, 10, 7, 5, 4, 3, 3, 2, 2, 2, 1, 2, 1, 1, 1, 1, 1;
%e A346875 ...
%e A346875 Illustration of initial terms:
%e A346875 Column H gives the nonzero hexagonal numbers (A000384).
%e A346875 Column S gives the sum of the divisors of the hexagonal numbers which equals the area (and the number of cells) of the associated diagram.
%e A346875 -------------------------------------------------------------------------
%e A346875   n    H    S   Diagram
%e A346875 -------------------------------------------------------------------------
%e A346875                  _         _                 _                         _
%e A346875   1    1    1   |_|       | |               | |                       | |
%e A346875                  1        | |               | |                       | |
%e A346875                        _ _| |               | |                       | |
%e A346875                       |    _|               | |                       | |
%e A346875                  _ _ _|  _|                 | |                       | |
%e A346875   2    6   12   |_ _ _ _| 1                 | |                       | |
%e A346875                     4    1                  | |                       | |
%e A346875                                        _ _ _|_|                       | |
%e A346875                                    _ _| |                             | |
%e A346875                                   |    _|                             | |
%e A346875                                  _|  _|                               | |
%e A346875                                 |_ _|1 1                              | |
%e A346875                                 | 2                                   | |
%e A346875                  _ _ _ _ _ _ _ _|4                           _ _ _ _ _| |
%e A346875   3   15   24   |_ _ _ _ _ _ _ _|                           |  _ _ _ _ _|
%e A346875                         8                                   | |
%e A346875                                                          _ _| |
%e A346875                                                      _ _|  _ _|
%e A346875                                                     |    _|
%e A346875                                                    _|  _|
%e A346875                                                   |  _|1 1
%e A346875                                              _ _ _| | 1
%e A346875                                             |  _ _ _|2
%e A346875                                             | |  3
%e A346875                                             | |
%e A346875                                             | |5
%e A346875                  _ _ _ _ _ _ _ _ _ _ _ _ _ _| |
%e A346875   4   28   56   |_ _ _ _ _ _ _ _ _ _ _ _ _ _ _|
%e A346875                               15
%e A346875 .
%Y A346875 Row sums give A000384, n >= 1.
%Y A346875 Row lengths give A005408.
%Y A346875 Column 1 is A267682, n >= 1.
%Y A346875 For the characteristic shape of sigma(A000040(n)) see A346871.
%Y A346875 For the characteristic shape of sigma(A000079(n)) see A346872.
%Y A346875 For the characteristic shape of sigma(A000217(n)) see A346873.
%Y A346875 For the visualization of Mersenne numbers A000225 see A346874.
%Y A346875 For the characteristic shape of sigma(A000396(n)) see A346876.
%Y A346875 For the characteristic shape of sigma(A008588(n)) see A224613.
%Y A346875 Cf. A000203, A237591, A237593, A245092, A249351, A262626.
%K A346875 nonn,tabf
%O A346875 1,2
%A A346875 _Omar E. Pol_, Aug 06 2021