cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A346876 Irregular triangle read by rows in which row n is the "n-th even perfect number" row of A237591, n >= 1.

This page as a plain text file.
%I A346876 #54 Jun 16 2023 05:31:25
%S A346876 4,1,1,15,5,3,2,1,1,1,249,83,42,25,17,13,9,7,6,5,5,3,4,2,3,2,2,2,2,2,
%T A346876 1,2,1,2,1,1,1,1,1,1,1,4065,1355,678,407,271,194,146,113,91,75,62,52,
%U A346876 45,40,34,30,27,25,22,19,19,16,15,14,13,12,12,10,10,9,9,8,8,7
%N A346876 Irregular triangle read by rows in which row n is the "n-th even perfect number" row of A237591, n >= 1.
%C A346876 The characteristic shape of the symmetric representation of sigma(A000396(n)) consists in that the diagram has only one region (or part) and that region has whidth 1 except in the main diagonal where the width is 2.
%C A346876 So knowing this characteristic shape we can know if a number is an even perfect number (or not) just by looking at the diagram, even ignoring the concept of even perfect number (see the examples).
%C A346876 Therefore we can see a geometric pattern of the distribution of the even perfect numbers in the stepped pyramid described in A245092.
%C A346876 For the definition of "width" see A249351.
%C A346876 T(n,k) is the length of the k-th line segment of the largest Dyck path of the symmetric representation of sigma(A000396(n)), from the border to the center, hence the sum of the n-th row of triangle is equal to A000396(n) assuming there are no odd perfect numbers.
%C A346876 T(n,k) is also the difference between the total number of partitions of all positive integers <= n-th even perfect number into exactly k consecutive parts, and the total number of partitions of all positive integers <= n-th perfect number into exactly k + 1 consecutive parts.
%H A346876 Michel Marcus, <a href="/A346876/b346876.txt">Table of n, a(n) for n = 1..8359</a> (rows 1..5).
%e A346876 Triangle begins:
%e A346876     4, 1, 1;
%e A346876    15, 5, 3, 2, 1, 1,1;
%e A346876   249,83,42,25,17,13,9,7,6,5,5,3,4,2,3,2,2,2,2,2,1,2,1,2,1,1,1,1,1,1,1;
%e A346876 ...
%e A346876 Illustration of initial terms:
%e A346876 Column P gives the even perfect numbers (A000396 assuming there are no odd perfect numbers).
%e A346876 Column S gives A139256, the sum of the divisors of the even perfect numbers equals the area (and the number of cells) of the associated diagram.
%e A346876 -------------------------------------------------------------------------
%e A346876   n    P   S    Diagram:   1                                           2
%e A346876 -------------------------------------------------------------------------
%e A346876                            _                                           _
%e A346876                           | |                                         | |
%e A346876                           | |                                         | |
%e A346876                        _ _| |                                         | |
%e A346876                       |    _|                                         | |
%e A346876                  _ _ _|  _|                                           | |
%e A346876   1    6   12   |_ _ _ _| 1                                           | |
%e A346876                     4    1                                            | |
%e A346876                                                                       | |
%e A346876                                                                       | |
%e A346876                                                                       | |
%e A346876                                                                       | |
%e A346876                                                                       | |
%e A346876                                                                       | |
%e A346876                                                              _ _ _ _ _| |
%e A346876                                                             |  _ _ _ _ _|
%e A346876                                                             | |
%e A346876                                                          _ _| |
%e A346876                                                      _ _|  _ _|
%e A346876                                                     |    _|
%e A346876                                                    _|  _|
%e A346876                                                   |  _|1 1
%e A346876                                              _ _ _| | 1
%e A346876                                             |  _ _ _|2
%e A346876                                             | |  3
%e A346876                                             | |
%e A346876                                             | |5
%e A346876                  _ _ _ _ _ _ _ _ _ _ _ _ _ _| |
%e A346876   2   28   56   |_ _ _ _ _ _ _ _ _ _ _ _ _ _ _|
%e A346876                               15
%e A346876 .
%e A346876 For n = 3, P = 496, the diagram is too large to include here. To draw that diagram note that the lengths of the line segments of the smallest Dyck path are [248, 83, 42, 25, 17, 13, 9, 7, 6, 5, 5, 3, 4, 2, 3, 2, 2, 2, 2, 2, 1, 2, 1, 2, 1, 1, 1, 1, 1, 2, 2, 1, 1, 1, 1, 1, 2, 1, 2, 1, 2, 2, 2, 2, 2, 3, 2, 4, 3, 5, 5, 6, 7, 9, 13, 17, 25, 42, 83, 248] and the lengths of the line segments of the largest Dyck path are [249, 83, 42, 25, 17, 13, 9, 7, 6, 5, 5, 3, 4, 2, 3, 2, 2, 2, 2, 2, 1, 2, 1, 2, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 2, 1, 2, 1, 2, 2, 2, 2, 2, 3, 2, 4, 3, 5, 5, 6, 7, 9, 13, 17, 25, 42, 83, 249].
%o A346876 (PARI) row235791(n) = vector((sqrtint(8*n+1)-1)\2, i, 1+(n-(i*(i+1)/2))\i);
%o A346876 row(n) = {my(orow = concat(row235791(n), 0)); vector(#orow -1, i, orow[i] - orow[i+1]); } \\ A237591
%o A346876 tabf(nn) = {for (n=1, nn, my(p=prime(n)); if (isprime(2^n-1), print(row(2^(n-1)*(2^n-1)));););}
%o A346876 tabf(7) \\ _Michel Marcus_, Aug 31 2021
%Y A346876 Row sums give A000396.
%Y A346876 Row lengths give A000668.
%Y A346876 For the characteristic shape of sigma(A000040(n)) see A346871.
%Y A346876 For the characteristic shape of sigma(A000079(n)) see A346872.
%Y A346876 For the characteristic shape of sigma(A000217(n)) see A346873.
%Y A346876 For the visualization of Mersenne numbers A000225 see A346874.
%Y A346876 For the characteristic shape of sigma(A000384(n)) see A346875.
%Y A346876 For the characteristic shape of sigma(A008588(n)) see A224613.
%Y A346876 Cf. A000203, A139256, A237591, A237593, A245092, A249351, A262626.
%K A346876 nonn,tabf
%O A346876 1,1
%A A346876 _Omar E. Pol_, Aug 06 2021
%E A346876 More terms from _Michel Marcus_, Aug 31 2021
%E A346876 Name edited by _Michel Marcus_, Jun 16 2023