This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A346876 #54 Jun 16 2023 05:31:25 %S A346876 4,1,1,15,5,3,2,1,1,1,249,83,42,25,17,13,9,7,6,5,5,3,4,2,3,2,2,2,2,2, %T A346876 1,2,1,2,1,1,1,1,1,1,1,4065,1355,678,407,271,194,146,113,91,75,62,52, %U A346876 45,40,34,30,27,25,22,19,19,16,15,14,13,12,12,10,10,9,9,8,8,7 %N A346876 Irregular triangle read by rows in which row n is the "n-th even perfect number" row of A237591, n >= 1. %C A346876 The characteristic shape of the symmetric representation of sigma(A000396(n)) consists in that the diagram has only one region (or part) and that region has whidth 1 except in the main diagonal where the width is 2. %C A346876 So knowing this characteristic shape we can know if a number is an even perfect number (or not) just by looking at the diagram, even ignoring the concept of even perfect number (see the examples). %C A346876 Therefore we can see a geometric pattern of the distribution of the even perfect numbers in the stepped pyramid described in A245092. %C A346876 For the definition of "width" see A249351. %C A346876 T(n,k) is the length of the k-th line segment of the largest Dyck path of the symmetric representation of sigma(A000396(n)), from the border to the center, hence the sum of the n-th row of triangle is equal to A000396(n) assuming there are no odd perfect numbers. %C A346876 T(n,k) is also the difference between the total number of partitions of all positive integers <= n-th even perfect number into exactly k consecutive parts, and the total number of partitions of all positive integers <= n-th perfect number into exactly k + 1 consecutive parts. %H A346876 Michel Marcus, <a href="/A346876/b346876.txt">Table of n, a(n) for n = 1..8359</a> (rows 1..5). %e A346876 Triangle begins: %e A346876 4, 1, 1; %e A346876 15, 5, 3, 2, 1, 1,1; %e A346876 249,83,42,25,17,13,9,7,6,5,5,3,4,2,3,2,2,2,2,2,1,2,1,2,1,1,1,1,1,1,1; %e A346876 ... %e A346876 Illustration of initial terms: %e A346876 Column P gives the even perfect numbers (A000396 assuming there are no odd perfect numbers). %e A346876 Column S gives A139256, the sum of the divisors of the even perfect numbers equals the area (and the number of cells) of the associated diagram. %e A346876 ------------------------------------------------------------------------- %e A346876 n P S Diagram: 1 2 %e A346876 ------------------------------------------------------------------------- %e A346876 _ _ %e A346876 | | | | %e A346876 | | | | %e A346876 _ _| | | | %e A346876 | _| | | %e A346876 _ _ _| _| | | %e A346876 1 6 12 |_ _ _ _| 1 | | %e A346876 4 1 | | %e A346876 | | %e A346876 | | %e A346876 | | %e A346876 | | %e A346876 | | %e A346876 | | %e A346876 _ _ _ _ _| | %e A346876 | _ _ _ _ _| %e A346876 | | %e A346876 _ _| | %e A346876 _ _| _ _| %e A346876 | _| %e A346876 _| _| %e A346876 | _|1 1 %e A346876 _ _ _| | 1 %e A346876 | _ _ _|2 %e A346876 | | 3 %e A346876 | | %e A346876 | |5 %e A346876 _ _ _ _ _ _ _ _ _ _ _ _ _ _| | %e A346876 2 28 56 |_ _ _ _ _ _ _ _ _ _ _ _ _ _ _| %e A346876 15 %e A346876 . %e A346876 For n = 3, P = 496, the diagram is too large to include here. To draw that diagram note that the lengths of the line segments of the smallest Dyck path are [248, 83, 42, 25, 17, 13, 9, 7, 6, 5, 5, 3, 4, 2, 3, 2, 2, 2, 2, 2, 1, 2, 1, 2, 1, 1, 1, 1, 1, 2, 2, 1, 1, 1, 1, 1, 2, 1, 2, 1, 2, 2, 2, 2, 2, 3, 2, 4, 3, 5, 5, 6, 7, 9, 13, 17, 25, 42, 83, 248] and the lengths of the line segments of the largest Dyck path are [249, 83, 42, 25, 17, 13, 9, 7, 6, 5, 5, 3, 4, 2, 3, 2, 2, 2, 2, 2, 1, 2, 1, 2, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 2, 1, 2, 1, 2, 2, 2, 2, 2, 3, 2, 4, 3, 5, 5, 6, 7, 9, 13, 17, 25, 42, 83, 249]. %o A346876 (PARI) row235791(n) = vector((sqrtint(8*n+1)-1)\2, i, 1+(n-(i*(i+1)/2))\i); %o A346876 row(n) = {my(orow = concat(row235791(n), 0)); vector(#orow -1, i, orow[i] - orow[i+1]); } \\ A237591 %o A346876 tabf(nn) = {for (n=1, nn, my(p=prime(n)); if (isprime(2^n-1), print(row(2^(n-1)*(2^n-1)));););} %o A346876 tabf(7) \\ _Michel Marcus_, Aug 31 2021 %Y A346876 Row sums give A000396. %Y A346876 Row lengths give A000668. %Y A346876 For the characteristic shape of sigma(A000040(n)) see A346871. %Y A346876 For the characteristic shape of sigma(A000079(n)) see A346872. %Y A346876 For the characteristic shape of sigma(A000217(n)) see A346873. %Y A346876 For the visualization of Mersenne numbers A000225 see A346874. %Y A346876 For the characteristic shape of sigma(A000384(n)) see A346875. %Y A346876 For the characteristic shape of sigma(A008588(n)) see A224613. %Y A346876 Cf. A000203, A139256, A237591, A237593, A245092, A249351, A262626. %K A346876 nonn,tabf %O A346876 1,1 %A A346876 _Omar E. Pol_, Aug 06 2021 %E A346876 More terms from _Michel Marcus_, Aug 31 2021 %E A346876 Name edited by _Michel Marcus_, Jun 16 2023