A346879 Sum of the divisors, except the smallest and the largest, of the n-th odd number.
0, 0, 0, 0, 3, 0, 0, 8, 0, 0, 10, 0, 5, 12, 0, 0, 14, 12, 0, 16, 0, 0, 32, 0, 7, 20, 0, 16, 22, 0, 0, 40, 18, 0, 26, 0, 0, 48, 18, 0, 39, 0, 22, 32, 0, 20, 34, 24, 0, 56, 0, 0, 86, 0, 0, 40, 0, 28, 64, 24, 11, 44, 30, 0, 46, 0, 26, 104, 0, 0, 50, 24, 34, 80, 0, 0, 80, 36
Offset: 1
Examples
For n = 5 the 5th odd number is 9 and the divisors of 9 are [1, 3, 9] and the sum of the divisors of 9 except the smaller and the largest is 3, so a(5) = 3. For n = 6 the 6th odd number is 11 and the divisors of 11 are [1, 11] and the sum of the divisors of 11 except the smaller and the largest is 0, so a(6) = 0.
Crossrefs
Programs
-
Mathematica
a[1] = 0; a[n_] := DivisorSigma[1, 2*n - 1] - 2*n; Array[a, 100] (* Amiram Eldar, Aug 19 2021 *)
-
Python
from sympy import divisors def a(n): return sum(divisors(2*n-1)[1:-1]) print([a(n) for n in range(1, 79)]) # Michael S. Branicky, Aug 19 2021
Formula
a(n) = A048050(2*n-1).
Comments