cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A346904 Numbers with sum of digits equaling 17, divisible by 17, and containing the string "17".

This page as a plain text file.
%I A346904 #15 Aug 22 2021 04:43:08
%S A346904 13175,15317,17153,17306,17612,21743,30617,41174,51731,61217,101762,
%T A346904 107117,110177,111707,117062,117215,117521,122417,125171,131750,
%U A346904 153017,153170,170153,170306,170612,171071,171224,171530,172142,172601,173060,173213,174131,175202,176120,214217
%N A346904 Numbers with sum of digits equaling 17, divisible by 17, and containing the string "17".
%H A346904 Chai Wah Wu, <a href="/A346904/b346904.txt">Table of n, a(n) for n = 1..14300</a> (all terms < 10^11)
%e A346904 13175 contains 17 as a substring; the sum of digits of 13175 is 17, and 13175 is divisible by 17. Thus, 13175 is in this sequence.
%t A346904 d17Q[n_] := Module[{idn = IntegerDigits[n]}, Total[idn] == 17 && MemberQ[Partition[idn, 2, 1], {1, 7}]]; Select[17*Range[20000], d17Q]
%o A346904 (Python)
%o A346904 def ok(n): s = str(n); return n%17==0 and '17' in s and sum(map(int, s))==17
%o A346904 print(list(filter(ok, range(214218)))) # _Michael S. Branicky_, Aug 06 2021
%Y A346904 Cf. A121669 (for 19 instead of 17).
%Y A346904 Intersection of A008599, A166370, and A293877
%K A346904 nonn,base
%O A346904 1,1
%A A346904 _Tanya Khovanova_, Aug 06 2021