This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A346906 #15 Apr 18 2022 12:30:08 %S A346906 1,1,1,1,3,1,1,7,3,1,1,15,9,4,1,1,31,25,10,5,1,1,63,70,35,15,6,1,1, %T A346906 127,196,140,35,21,7,1,1,255,553,476,175,56,28,8,1,1,511,1569,1624, %U A346906 1071,126,84,36,9,1,1,1023,4476,6070,4935,1197,210,120,45,10,1 %N A346906 Triangle read by rows: T(n,k) is the number of ways of choosing a k-dimensional cube from the vertices of an n-dimensional hypercube, where one of the vertices is the origin; 0 <= k <= n. %F A346906 T(n,k) = A346905(n,k)/2^(n-k). %e A346906 Triangle begins: %e A346906 n\k | 0 1 2 3 4 5 6 7 8 9 %e A346906 ----+-------------------------------------------------- %e A346906 0 | 1; %e A346906 1 | 1, 1; %e A346906 2 | 1, 3, 1; %e A346906 3 | 1, 7, 3, 1; %e A346906 4 | 1, 15, 9, 4, 1; %e A346906 5 | 1, 31, 25, 10, 5, 1; %e A346906 6 | 1, 63, 70, 35, 15, 6, 1; %e A346906 7 | 1, 127, 196, 140, 35, 21, 7, 1; %e A346906 8 | 1, 255, 553, 476, 175, 56, 28, 8, 1; %e A346906 9 | 1, 511, 1569, 1624, 1071, 126, 84, 36, 9, 1 %e A346906 One of the T(7,3) = 140 ways of choosing a 3-cube from the vertices of a 7-cube where one of the vertices is the origin is the cube with the following eight points: %e A346906 (0,0,0,0,0,0,0); %e A346906 (1,1,0,0,0,0,0); %e A346906 (0,0,1,0,0,1,0); %e A346906 (0,0,0,0,1,0,1); %e A346906 (1,1,1,0,0,1,0); %e A346906 (1,1,0,0,1,0,1); %e A346906 (0,0,1,0,1,1,1); and %e A346906 (1,1,1,0,1,1,1). %t A346906 T[n_, 0] := 1 %t A346906 T[n_, k_] := Sum[n!/(k!*(i!)^k*(n - i*k)!), {i, 1, n/k}] %Y A346906 Columns: A000012 (k=0), A000225 (k=1), A097861 (k=2), A344559 (k=3). %Y A346906 Cf. A346905. %K A346906 nonn,tabl %O A346906 0,5 %A A346906 _Peter Kagey_, Aug 06 2021