cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A346909 Continued fraction expansion of the constant whose decimal expansion is A269707.

This page as a plain text file.
%I A346909 #14 Oct 16 2023 01:48:45
%S A346909 3,3,3,30,330,303000,33003300000,3030000030300000000000,
%T A346909 3300330000000000330033000000000000000000000,
%U A346909 30300000303000000000000000000000303000003030000000000000000000000000000000000000000000
%N A346909 Continued fraction expansion of the constant whose decimal expansion is A269707.
%C A346909 The next term has 171 digits and is too large to include in the Data section.
%D A346909 André Blanchard and Michel Mendès France, Symétrie et transcendance, Bull. Sc. Math., 2nd series, Vol. 106 (1982), pp. 325-335.
%H A346909 Amiram Eldar, <a href="/A346909/b346909.txt">Table of n, a(n) for n = 1..13</a>
%H A346909 M. Mendes France and A. J. van der Poorten, <a href="https://doi.org/10.1112/S0025579300006380">Some explicit continued fraction expansions</a>, Mathematika, Vol. 38, No. 1 (1991), pp. 1-9.
%F A346909 a(n) = 3 * 10^((4^((n-3)/2)-1)/3) * Product_{k=0..(n-5)/2} (1 + 10^(4^k)), if n > 2 is odd, and 3 * 10^((2*4^(n/2-2)+1)/3) * Product_{k=0..n/2-3} (1 + 10^(2*4^k)), if n > 2 is even.
%e A346909 3 + 1/(3 + 1/(3 + 1/(30 + 1/(330 + ... )))) = 3.30033000000000033... (A269707).
%t A346909 a[1] = a[2] = 3; a[n_] := 3 * If[OddQ[n], 10^((4^((n - 3)/2) - 1)/3) * Product[1 + 10^(4^k), {k, 0, (n - 5)/2}], 10^((2*4^(n/2 - 2) + 1)/3) * Product[1 + 10^(2*4^k), {k, 0, n/2 - 3}]]; Array[a, 10]
%Y A346909 Cf. A269707.
%K A346909 nonn,cofr,base
%O A346909 1,1
%A A346909 _Amiram Eldar_, Aug 06 2021