A346910 Numbers k such that k and k+1 are both nonprime-powers whose all distinct prime divisors are consecutive primes (A066312).
35, 143, 323, 384, 539, 899, 2430, 3599, 4199, 4374, 5183, 11663, 22499, 32399, 36863, 57599, 72899, 176399, 186623, 359999, 656099, 1102499, 1327103, 2624399, 5336099, 6718463, 8999999, 11289599, 16402499, 23039999, 34574399, 39689999, 54022499, 57153599, 77792399
Offset: 1
Keywords
Examples
35 = 5 * 7 is a term since 5 and 7 are consecutive primes, 35 + 1 = 36 = 2^2 * 3^2 and 2 and 3 are also consecutive primes.
Links
- David A. Corneth, Table of n, a(n) for n = 1..741 (terms <= 10^20)
Programs
-
Mathematica
q[n_] := Module[{p = FactorInteger[n][[;; , 1]], np}, np = Length[p]; np > 1 && PrimePi[p[[-1]]] - PrimePi[p[[1]]] == np - 1]; s = {}; n = 1; q1 = q[1]; Do[q2 = q[n]; If[q1 && q2, AppendTo[s, n - 1]]; q1 = q2; n++, {10^5}]; s
Comments