This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A346911 #14 Sep 11 2021 01:11:43 %S A346911 2,4,6,6,15,8,8,28,32,16,10,45,80,80,32,12,66,160,240,192,64,14,91, %T A346911 280,560,672,448,128,16,120,448,1120,1792,1792,1024,256,18,153,672, %U A346911 2016,4032,5376,4608,2304,512 %N A346911 Triangle read by rows: T(n,k) is the number of k-dimensional simplices with vertices from the n-dimensional cross polytope; 0 <= k < n. %F A346911 T(n,0) = 2*n; %F A346911 T(n,1) = 2*n^2-n; %F A346911 T(n,k) = A013609(n,k+1) when k > 1. %e A346911 Table begins: %e A346911 n\k | 0 1 2 3 4 5 6 7 8 %e A346911 ----+------------------------------------------------- %e A346911 1 | 2 %e A346911 2 | 4, 6 %e A346911 3 | 6, 15, 8 %e A346911 4 | 8, 28, 32, 16 %e A346911 5 | 10, 45, 80, 80, 32 %e A346911 6 | 12, 66, 160, 240, 192, 64 %e A346911 7 | 14, 91, 280, 560, 672, 448, 128 %e A346911 8 | 16, 120, 448, 1120, 1792, 1792, 1024, 256 %e A346911 9 | 18, 153, 672, 2016, 4032, 5376, 4608, 2304, 512 %e A346911 Three of the T(3,1) = 15 1-simplices (line segments) in the 3-dimensional cross-polytope have vertices {(1,0,0), (-1,0,0)}, {(1,0,0), (0,1,0)}, and {(0,1,0), (0,0,-1)}. %e A346911 One of the T(5,3) = 80 of the 3-simplices (tetrahedra) in the 5-dimensional cross-polytope has vertices {(1,0,0,0,0), (0,0,1,0,0), (0,0,0,-1,0), (0,0,0,0,1)}. %Y A346911 Cf. A013609, A346905. %K A346911 nonn,tabl,more %O A346911 1,1 %A A346911 _Peter Kagey_, Aug 06 2021