This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A346912 #46 May 04 2025 13:42:31 %S A346912 1,3,7,11,19,27,39,51,71,91,119,147,187,227,279,331,403,475,567,659, %T A346912 779,899,1047,1195,1383,1571,1799,2027,2307,2587,2919,3251,3655,4059, %U A346912 4535,5011,5579,6147,6807,7467,8247,9027,9927,10827,11875,12923,14119,15315 %N A346912 a(0) = 1; a(n) = a(n-1) + a(floor(n/2)) + 1. %H A346912 Robert Israel, <a href="/A346912/b346912.txt">Table of n, a(n) for n = 0..10000</a> %F A346912 G.f.: (1/(1 - x)) * (-1 + 2 * Product_{k>=0} 1/(1 - x^(2^k))). %F A346912 a(n) = n + 1 + Sum_{k=1..n} a(floor(k/2)). %F A346912 a(n) = 2 * A000123(n) - 1. %F A346912 a(n) = 4 * A033485(n) - 1 for n > 0. - _Hugo Pfoertner_, Aug 12 2021 %F A346912 From _Michael Tulskikh_, Aug 12 2021: (Start) %F A346912 2*a(2n) = a(2n-1) + a(2n+1). %F A346912 a(2n) = a(2n-2) + a(n-1) + a(n) + 2. %F A346912 a(2n) = 2*(Sum_{i=0..n} a(i)) - a(n) + 2n. (End) %p A346912 f:= proc(n) option remember; procname(n-1) + procname(floor(n/2)) + 1 end proc; %p A346912 f(0):= 1: %p A346912 map(f, [$1..50]); # _Robert Israel_, May 04 2025 %t A346912 a[0] = 1; a[n_] := a[n] = a[n - 1] + a[Floor[n/2]] + 1; Table[a[n], {n, 0, 47}] %t A346912 nmax = 47; CoefficientList[Series[(1/(1 - x)) (-1 + 2 Product[1/(1 - x^(2^k)), {k, 0, Floor[Log[2, nmax]]}]), {x, 0, nmax}], x] %o A346912 (Python) %o A346912 from itertools import islice %o A346912 from collections import deque %o A346912 def A346912_gen(): # generator of terms %o A346912 aqueue, f, b, a = deque([2]), True, 1, 2 %o A346912 yield from (1, 3, 7) %o A346912 while True: %o A346912 a += b %o A346912 yield 4*a - 1 %o A346912 aqueue.append(a) %o A346912 if f: b = aqueue.popleft() %o A346912 f = not f %o A346912 A346912_list = list(islice(A346912_gen(),40)) # _Chai Wah Wu_, Jun 08 2022 %Y A346912 Cf. A000123, A018819, A022907, A033485, A102378, A102379. %K A346912 nonn %O A346912 0,2 %A A346912 _Ilya Gutkovskiy_, Aug 11 2021