cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A346919 Numbers that are both palindromes (A002113) and terms of A072389.

This page as a plain text file.
%I A346919 #34 Apr 23 2023 23:40:48
%S A346919 0,4,252,2112,2772,6336,21012,27072,42924,48384,48984,63036,252252,
%T A346919 297792,407704,2327232,2572752,2747472,2774772,2958592,4457544,
%U A346919 4811184,6378736,6396936,25777752,27633672,29344392,63099036,63399336,404080404,409757904,441525144
%N A346919 Numbers that are both palindromes (A002113) and terms of A072389.
%F A346919 Intersection of A072389 and A002113.
%F A346919 Intersection of 4*A085780 and A002113.
%t A346919 p[n_] :=  n*(n + 1); m = 1000; Select[Union[ Times @@@ Tuples[p /@ Range[0, m], {2}]], # <= 2*p[m] && PalindromeQ[#] &] (* _Amiram Eldar_, Aug 13 2021 *)
%o A346919 (SageMath)
%o A346919 # the sequence numbers up to a limit
%o A346919 def a346919_upto(lim, alst=set([0])):
%o A346919     for i in range(1, int(lim**0.25)):
%o A346919         for j in range(i, int((lim/(i*(i+1)))**0.5)+1):
%o A346919             if all([(k:=i*(i+1)*j*(j+1))<=lim, str(k)==str(k)[::-1]]): alst.add(k)
%o A346919     return sorted(alst)
%o A346919 print(a346919_upto(10**9)) # _Dumitru Damian_, Apr 05 2023
%Y A346919 Cf. A002113, A072389, A085780.
%K A346919 nonn,base
%O A346919 1,2
%A A346919 _Dumitru Damian_, Aug 07 2021
%E A346919 More terms from _Jinyuan Wang_, Aug 07 2021