A346926 a(n) is the smallest positive integer whose square starts and ends with exactly n identical digits, and a(n) = 0 when there is no such integer.
1, 88, 10538, 235700, 0, 57735000, 0, 14907120000, 0, 235702260400000, 0, 7453559925000000, 0, 105409255338950000000, 0, 10540925533894600000000, 0, 14907119849998598000000000, 0, 74535599249992989880000000000, 0, 210818510677891955466600000000000, 0
Offset: 1
Examples
a(2) = 88 because 88^2 = 7744 starts with two 7's and ends with two 4's, and 88 is the smallest integer whose square starts and ends with exactly 2 identical digits. a(4) = 235700 because 235700^2 = 55554490000 starts with four 5's and ends with four 0's, and 235700 is the smallest integer whose square starts and ends with exactly 4 identical digits.
Formula
a(2*n+1) = 0 for n >= 2.
a(2*n) = A119511(2*n) * 10^n, for n >= 2.
Comments