This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A346927 #18 Aug 06 2024 05:55:11 %S A346927 9,9,9,0,3,9,5,0,7,5,9,8,2,7,1,5,6,5,6,3,9,2,2,1,8,4,5,6,9,9,3,4,1,8, %T A346927 3,1,4,2,5,9,2,9,6,4,9,6,6,6,8,9,0,6,4,7,1,0,6,8,9,4,8,7,5,5,0,6,1,4, %U A346927 2,4,5,8,3,8,4,0,3,8,1,2,4,4,0,7,9,8,5 %N A346927 Decimal expansion of the Dirichlet eta function at 10. %D A346927 L. B. W. Jolley, Summation of Series, Dover, 1961, Eq. (306). %H A346927 Michael I. Shamos, <a href="https://citeseerx.ist.psu.edu/pdf/ae33a269baba5e8b1038e719fb3209e8a00abec5">Shamos's catalog of the real numbers</a> (2011). %H A346927 <a href="/index/Tra#transcendental">Index entries for transcendental numbers</a> %F A346927 Equals 73 * Pi^10 / (2^9 * 3^5 * 5 * 11). %F A346927 Equals (511/512) * zeta(10). %F A346927 Equals Sum_{k>=1} (-1)^(k+1) / k^10. %F A346927 Equals eta(10). %e A346927 0.999039507598271565639221845699341831425929649666890... %t A346927 RealDigits[DirichletEta[10], 10, 100][[1]] (* _Amiram Eldar_, Aug 08 2021 *) %o A346927 (PARI) -polylog(10, -1) \\ _Michel Marcus_, Aug 08 2021 %Y A346927 Cf. A072691, A197070, A267315, A267316, A275703, A275710, A347150, A347059. %K A346927 nonn,cons %O A346927 0,1 %A A346927 _Sean A. Irvine_, Aug 07 2021