A346928 Irregular triangle read by rows; the n-th row contains, in ascending order, the distinct integers of the form n! / m! (with 1 <= m <= n) that do not appear in former rows.
1, 2, 3, 6, 4, 12, 24, 5, 20, 60, 120, 30, 360, 720, 7, 42, 210, 840, 2520, 5040, 8, 56, 336, 1680, 6720, 20160, 40320, 9, 72, 504, 3024, 15120, 60480, 181440, 362880, 10, 90, 30240, 151200, 604800, 1814400, 3628800, 11, 110, 990, 7920, 55440, 332640, 1663200, 6652800, 19958400, 39916800
Offset: 1
Examples
Triangle begins: 1; 2; 3, 6; 4, 12, 24; 5, 20, 60, 120; 30, 360, 720; 7, 42, 210, 840, 2520, 5040; 8, 56, 336, 1680, 6720, 20160, 40320; 9, 72, 504, 3024, 15120, 60480, 181440, 362880; 10, 90, 30240, 151200, 604800, 1814400, 3628800; 11, 110, 990, 7920, 55440, 332640, 1663200, 6652800, 19958400, 39916800; ...
Links
Programs
-
PARI
s=[]; for (n=1, 11, p=1; forstep (m=n, 1, -1, if (!setsearch(s, p*=m), s=setunion(s, [p]); print1 (p", "))))
-
Python
from math import factorial def auptor(rows): alst, aset = [1], {1} for n in range(2, rows+1): fn = factorial(n) for m in range(n-1, 0, -1): fm = factorial(m) q, r = divmod(fn, factorial(m)) if r == 0 and q not in aset: alst.append(q); aset.add(q) return alst print(auptor(11)) # Michael S. Branicky, Oct 17 2021
Comments