This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A346941 #38 Sep 18 2021 07:57:49 %S A346941 1,1,4,15,90,555,4815,41034,443268,4977381,64274655,857332366, %T A346941 13328296014,207666642131,3620701556017,65845797790798, %U A346941 1294049887432888,26168756518235801,576107273399556987,12940593913711504118,311924384689270232770,7752903433736003497447,203126367130952306670541 %N A346941 E.g.f.: Product_{k>=1} 1 / (1 - x^k)^cos(x). %F A346941 E.g.f.: exp( cos(x) * Sum_{k>=1} sigma(k)*x^k/k ). %F A346941 E.g.f.: exp( cos(x) * Sum_{k>=1} x^k/(k*(1 - x^k)) ). %o A346941 (PARI) N=40; x='x+O('x^N); Vec(serlaplace(1/prod(k=1, N, (1-x^k)^cos(x)))) %o A346941 (PARI) N=40; x='x+O('x^N); Vec(serlaplace(exp(cos(x)*sum(k=1, N, sigma(k)*x^k/k)))) %o A346941 (PARI) N=40; x='x+O('x^N); Vec(serlaplace(exp(cos(x)*sum(k=1, N, x^k/(k*(1-x^k)))))) %Y A346941 Cf. A000203, A346547, A346841, A347774. %K A346941 nonn %O A346941 0,3 %A A346941 _Seiichi Manyama_, Sep 18 2021