cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A346941 E.g.f.: Product_{k>=1} 1 / (1 - x^k)^cos(x).

This page as a plain text file.
%I A346941 #38 Sep 18 2021 07:57:49
%S A346941 1,1,4,15,90,555,4815,41034,443268,4977381,64274655,857332366,
%T A346941 13328296014,207666642131,3620701556017,65845797790798,
%U A346941 1294049887432888,26168756518235801,576107273399556987,12940593913711504118,311924384689270232770,7752903433736003497447,203126367130952306670541
%N A346941 E.g.f.: Product_{k>=1} 1 / (1 - x^k)^cos(x).
%F A346941 E.g.f.: exp( cos(x) * Sum_{k>=1} sigma(k)*x^k/k ).
%F A346941 E.g.f.: exp( cos(x) * Sum_{k>=1} x^k/(k*(1 - x^k)) ).
%o A346941 (PARI) N=40; x='x+O('x^N); Vec(serlaplace(1/prod(k=1, N, (1-x^k)^cos(x))))
%o A346941 (PARI) N=40; x='x+O('x^N); Vec(serlaplace(exp(cos(x)*sum(k=1, N, sigma(k)*x^k/k))))
%o A346941 (PARI) N=40; x='x+O('x^N); Vec(serlaplace(exp(cos(x)*sum(k=1, N, x^k/(k*(1-x^k))))))
%Y A346941 Cf. A000203, A346547, A346841, A347774.
%K A346941 nonn
%O A346941 0,3
%A A346941 _Seiichi Manyama_, Sep 18 2021