This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A346945 #17 Mar 07 2025 05:41:59 %S A346945 1,-6,35,-235,1834,-16352,164044,-1830630,22513326,-302700926, %T A346945 4419167532,-69637654996,1178377833424,-21315571470320, %U A346945 410529985172400,-8388475139138320,181270810764205440,-4130796696683135280,99008773205008777760,-2490134250475836315120 %N A346945 Expansion of e.g.f. log( 1 + log(1 + x)^3 / 3! ). %F A346945 a(n) = Stirling1(n,3) - (1/n) * Sum_{k=1..n-1} binomial(n,k) * Stirling1(n-k,3) * k * a(k). %F A346945 a(n) = Sum_{k=1..floor(n/3)} (-1)^(k-1) * (3*k)! * Stirling1(n,3*k)/(k * 6^k). - _Seiichi Manyama_, Jan 23 2025 %t A346945 nmax = 22; CoefficientList[Series[Log[1 + Log[1 + x]^3/3!], {x, 0, nmax}], x] Range[0, nmax]! // Drop[#, 3] & %t A346945 a[n_] := a[n] = StirlingS1[n, 3] - (1/n) Sum[Binomial[n, k] StirlingS1[n - k, 3] k a[k], {k, 1, n - 1}]; Table[a[n], {n, 3, 22}] %Y A346945 Cf. A000399, A003713, A081051, A346944, A346946, A346947. %Y A346945 Cf. A346975. %K A346945 sign %O A346945 3,2 %A A346945 _Ilya Gutkovskiy_, Aug 08 2021