cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A346946 Expansion of e.g.f. log( 1 + log(1 + x)^4 / 4! ).

This page as a plain text file.
%I A346946 #13 Jan 23 2025 08:31:18
%S A346946 1,-10,85,-735,6734,-66024,693230,-7774250,92759821,-1172483598,
%T A346946 15630569591,-218793782025,3201481037819,-48746860400024,
%U A346946 768683653934928,-12487871805640344,207761719406853466,-3513910668343842900,59833161662103132050,-1011244718827893629750
%N A346946 Expansion of e.g.f. log( 1 + log(1 + x)^4 / 4! ).
%F A346946 a(n) = Stirling1(n,4) - (1/n) * Sum_{k=1..n-1} binomial(n,k) * Stirling1(n-k,4) * k * a(k).
%F A346946 a(n) = Sum_{k=1..floor(n/4)} (-1)^(k-1) * (4*k)! * Stirling1(n,4*k)/(k * 24^k). - _Seiichi Manyama_, Jan 23 2025
%t A346946 nmax = 23; CoefficientList[Series[Log[1 + Log[1 + x]^4/4!], {x, 0, nmax}], x] Range[0, nmax]! // Drop[#, 4] &
%t A346946 a[n_] := a[n] = StirlingS1[n, 4] - (1/n) Sum[Binomial[n, k] StirlingS1[n - k, 4] k a[k], {k, 1, n - 1}]; Table[a[n], {n, 4, 23}]
%Y A346946 Cf. A000454, A003713, A346944, A346945, A346947.
%Y A346946 Cf. A346976.
%K A346946 sign
%O A346946 4,2
%A A346946 _Ilya Gutkovskiy_, Aug 08 2021