cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A346947 Expansion of e.g.f. log( 1 + log(1 + x)^5 / 5! ).

This page as a plain text file.
%I A346947 #9 Jan 23 2025 08:16:10
%S A346947 1,-15,175,-1960,22449,-269451,3423860,-46238280,664233856,
%T A346947 -10143487354,164423204582,-2823783679080,51273355515264,
%U A346947 -982236541934430,19809898439192946,-419752648063849626,9325875631405818996,-216846992855331506052,5267598064689049209252
%N A346947 Expansion of e.g.f. log( 1 + log(1 + x)^5 / 5! ).
%F A346947 a(n) = Stirling1(n,5) - (1/n) * Sum_{k=1..n-1} binomial(n,k) * Stirling1(n-k,5) * k * a(k).
%F A346947 a(n) = Sum_{k=1..floor(n/5)} (-1)^(k-1) * (5*k)! * Stirling1(n,5*k)/(k * 120^k). - _Seiichi Manyama_, Jan 23 2025
%t A346947 nmax = 23; CoefficientList[Series[Log[1 + Log[1 + x]^5/5!], {x, 0, nmax}], x] Range[0, nmax]! // Drop[#, 5] &
%t A346947 a[n_] := a[n] = StirlingS1[n, 5] - (1/n) Sum[Binomial[n, k] StirlingS1[n - k, 5] k a[k], {k, 1, n - 1}]; Table[a[n], {n, 5, 23}]
%Y A346947 Cf. A000482, A003713, A346944, A346945, A346946.
%K A346947 sign
%O A346947 5,2
%A A346947 _Ilya Gutkovskiy_, Aug 08 2021