cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A346951 Positive integers k such that 10*k+9 is equal to the product of two integers ending with 3 (A346950).

This page as a plain text file.
%I A346951 #11 Aug 21 2021 15:47:08
%S A346951 0,3,6,9,12,15,16,18,21,24,27,29,30,33,36,39,42,45,48,51,52,54,55,57,
%T A346951 60,63,66,68,69,72,75,78,81,84,87,90,93,94,96,98,99,102,105,107,108,
%U A346951 111,114,117,120,121,123,126,129,132,133,135,138,141,144,146,147,150
%N A346951 Positive integers k such that 10*k+9 is equal to the product of two integers ending with 3 (A346950).
%F A346951 a(n) = (A346950(n) - 9)/10.
%F A346951 Lim_{n->infinity} a(n)/a(n-1) = 1.
%e A346951 15 is a term because 3*53 = 159 = 15*10 + 9.
%t A346951 a={}; For[n=0, n<=150, n++, For[k=0, k<=n, k++, If[Mod[10*n+9, 10*k+3]==0 && Mod[(10*n+9)/(10*k+3), 10]==3&& 10*n+9>Max[10a+9], AppendTo[a, n]]]]; a
%o A346951 (Python)
%o A346951 def aupto(lim): return sorted(set(a*b//10 for a in range(3, 10*lim//3+4, 10) for b in range(a, 10*lim//a+4, 10) if a*b//10 <= lim))
%o A346951 print(aupto(150)) # _Michael S. Branicky_, Aug 11 2021
%Y A346951 Cf. A016873 (ending with 5), A017377, A324298 (ending with 6), A346950, A346952, A346953.
%K A346951 nonn,base
%O A346951 1,2
%A A346951 _Stefano Spezia_, Aug 08 2021