cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A346953 a(n) is the number of divisors of A346950(n) ending with 3.

This page as a plain text file.
%I A346953 #15 Nov 04 2024 01:40:05
%S A346953 1,2,2,2,2,2,1,2,2,2,2,2,2,2,2,2,4,2,2,2,1,2,2,2,2,2,2,2,2,2,4,2,4,2,
%T A346953 2,2,2,2,2,2,2,2,2,2,3,2,2,2,4,2,2,2,2,2,2,2,2,4,4,2,2,2,2,2,4,2,2,2,
%U A346953 2,2,2,4,2,2,2,1,2,2,2,2,2,2,4,2,2,4,2,2
%N A346953 a(n) is the number of divisors of A346950(n) ending with 3.
%C A346953 a(n) = 1 if A346950(n) = k^2 where k is either a prime ending with 3 or the product of a prime ending with 7 and a prime ending with 9. - _Robert Israel_, Nov 03 2024
%H A346953 Robert Israel, <a href="/A346953/b346953.txt">Table of n, a(n) for n = 1..10000</a>
%e A346953 a(17) = 4 since there are 4 divisors of A346950(17) = 429 ending with 3: 3, 13, 33 and 143.
%p A346953 N:= 10000: # for a(1) .. a(M) where the last term of A346950 less than N is A346950(M)
%p A346953 S:= {}:
%p A346953 for n from 3 to floor(sqrt(N)) by 10 do
%p A346953   S:= S union map(`*`, {seq(i,i= n .. floor(N/n), 10)},n)
%p A346953 od:
%p A346953 S:= sort(convert(S,list)):
%p A346953 map(t -> nops(select(t -> t mod 10 = 3, numtheory:-divisors(t))), S); # _Robert Israel_, Nov 03 2024
%t A346953 b={}; For[n=0, n<=450, n++, For[k=0, k<=n, k++, If[Mod[10*n+9, 10*k+3]==0 && Mod[(10*n+9)/(10*k+3), 10]==3 && 10*n+9>Max[b], AppendTo[b, 10*n+9]]]]; (* A346950 *) a={}; For[i =1, i<=Length[b], i++, AppendTo[a, Length[Drop[Select[Divisors[Part[b, i]], (Mod[#, 10]==3&)]]]]]; a
%o A346953 (Python)
%o A346953 from sympy import divisors
%o A346953 def f(n): return sum(d%10 == 3 for d in divisors(n)[1:-1])
%o A346953 def A346950upto(lim): return sorted(set(a*b for a in range(3, lim//3+1, 10) for b in range(a, lim//a+1, 10)))
%o A346953 print(list(map(f, A346950upto(2129)))) # _Michael S. Branicky_, Aug 11 2021
%Y A346953 Cf. A000005, A017377, A346388 (ending with 5), A346389 (ending with 6), A346950, A346951, A346952.
%K A346953 nonn,base
%O A346953 1,2
%A A346953 _Stefano Spezia_, Aug 08 2021