cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A346954 Expansion of e.g.f. -log( 1 - (exp(x) - 1)^4 / 4! ).

This page as a plain text file.
%I A346954 #12 Jan 23 2025 08:30:54
%S A346954 1,10,65,350,1736,9030,60355,561550,6188996,69919850,781211795,
%T A346954 8854058850,106994019406,1433756147470,21287253921635,339206526695750,
%U A346954 5630710652048216,96341917117951890,1708973354556320875,31787279786739738250,623964823224788294426
%N A346954 Expansion of e.g.f. -log( 1 - (exp(x) - 1)^4 / 4! ).
%F A346954 a(n) = Stirling2(n,4) + (1/n) * Sum_{k=1..n-1} binomial(n,k) * Stirling2(n-k,4) * k * a(k).
%F A346954 a(n) ~ (n-1)! / (log(2^(3/4)*3^(1/4) + 1))^n. - _Vaclav Kotesovec_, Aug 09 2021
%F A346954 a(n) = Sum_{k=1..floor(n/4)} (4*k)! * Stirling2(n,4*k)/(k * 24^k). - _Seiichi Manyama_, Jan 23 2025
%t A346954 nmax = 24; CoefficientList[Series[-Log[1 - (Exp[x] - 1)^4/4!], {x, 0, nmax}], x] Range[0, nmax]! // Drop[#, 4] &
%t A346954 a[n_] := a[n] = StirlingS2[n, 4] + (1/n) Sum[Binomial[n, k] StirlingS2[n - k, 4] k a[k], {k, 1, n - 1}]; Table[a[n], {n, 4, 24}]
%Y A346954 Cf. A000453, A000629, A003704, A327505, A346390, A346895, A346955.
%K A346954 nonn
%O A346954 4,2
%A A346954 _Ilya Gutkovskiy_, Aug 08 2021