This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A346958 #22 Sep 23 2022 11:55:39 %S A346958 6,10,13,15,17,18,18,21,23,25,26,26 %N A346958 a(n) is the minimal number of cubes required to make a void of volume n. %C A346958 Following is an illustration of the first few voids in the form of polycubes (where an o represents a continuation upwards and an x represents a continuation downwards) each of which can be made by concealing it with a(n) cubes. %C A346958 .---. .---. %C A346958 | | | | %C A346958 .---. .---.---. .---.---. .---.---. %C A346958 | | | | | | | | | | o | %C A346958 .---. .---.---. .---.---. .---.---. %C A346958 n=1 n=2 n=3 n=4 %C A346958 .---. .---. .---. %C A346958 | | | | | | %C A346958 .---.---. .---.---.---. .---.---.---. %C A346958 | | o | | | o | | | | ox| | %C A346958 .---.---. .---.---.---. .---.---.---. %C A346958 | | | | | | %C A346958 .---. .---. .---. %C A346958 n=5 n=6 n=7 %C A346958 Equivalently, the minimum perimeter size of any polycube of size n. - _Sean A. Irvine_, Aug 23 2021 %C A346958 Conjecture: When n is in A001845 the void is an octahedral crystal ball of volume n = A001845(m), which is concealed by a(n) = A005899(m+1) cubes. So a(A001845(m)) = A005899(m+1), m>=0. For example, a(1)=6 and a(7)=18. - _Mohammed Yaseen_, Sep 15 2022 %H A346958 Sean A. Irvine, <a href="https://github.com/archmageirvine/joeis/blob/master/src/irvine/oeis/a346/A346958.java">Java program</a> (github) %F A346958 a(n) < A193416(n) for n>2. %e A346958 A cube-shaped void can be made by concealing it with 6 cubes, which is the minimal number to do so. So a(1)=6. %e A346958 A dicube-shaped void can be made by concealing it with 10 cubes, which is the minimal number to do so. So a(2)=10. %Y A346958 Cf. A261491 (2D analog). %Y A346958 Cf. A000162, A003211, A193416. %K A346958 nonn,hard,more %O A346958 1,1 %A A346958 _Mohammed Yaseen_, Aug 08 2021 %E A346958 a(8)-a(12) from _Sean A. Irvine_, Aug 23 2021