This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A346962 #12 Aug 25 2021 03:24:49 %S A346962 0,5,5,6,2,9,5,8,9,7,2,8,9,8,6,8,9,5,4,6,1,2,9,0,1,4,6,6,9,4,1,0,5,0, %T A346962 6,8,4,5,6,1,2,9,4,8,6,9,1,1,7,2,5,2,1,6,9,3,4,9,3,9,8,6,9,5,7,1,2,4, %U A346962 2,9,0,3,0,3,2,6,9,0,1,3,5,0,4,0,1,6,9,4,6,7,8,3,0,9,9,7,5,6,6,2,9,6,3,1,1,1,4,3 %N A346962 Decimal expansion of Integral_{x=-1/e..0} LambertW(x)/LambertW(-1,x) dx. %F A346962 Equals (1/e) + Integral_{x=0..1} log(x)*x^(1/(1-x))/(1-x) dx. %F A346962 Equals (1/e) - Sum_{n>0} n^(n-2)/(n+1)^(n+1) = A068985-Sum_{n>0} A000272(n)/A000312(n+1). %e A346962 0.0556295897289868954612901466941050684561294869117252169349398695712429... %p A346962 evalf(Integrate(LambertW(x)/LambertW(-1, x), x = -exp(-1)..0), 120); # _Vaclav Kotesovec_, Aug 23 2021 %t A346962 N[Integrate[LambertW[x]/LambertW[-1,x],{x,-1/E,0}],120] %o A346962 (PARI) exp(-1)+intnum(x=0,1,log(x)*x^(1/(1-x))/(1-x)) %Y A346962 Cf. A000272, A000312, A068985, A346963. %K A346962 nonn,cons %O A346962 0,2 %A A346962 _Gleb Koloskov_, Aug 09 2021