This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A346964 #4 Aug 09 2021 08:36:10 %S A346964 1,1,2,7,40,257,2086,19567,207572,2451745,32226922,462314711, %T A346964 7178502112,120315808417,2157566463950,41277697722367,838883560646476, %U A346964 18020304830796737,408135672764386642,9723868266912217255,242827969365094823192,6345340713682009241281 %N A346964 Expansion of e.g.f. Product_{k>=1} exp(x^k) * (1 + x^k). %F A346964 a(n) = Sum_{k=0..n} binomial(n,k) * A000262(k) * A088311(n-k). %F A346964 E.g.f.: Product_{k>=1} (1 + x^k) / (1 - x^k)^(A000010(k)/k). %F A346964 a(n) ~ 2^(-3/2) * (4 + Pi^2/3)^(1/4) * exp(sqrt((4 + Pi^2/3)*n) - n - 1/2) * n^(n - 1/4). %t A346964 nmax = 20; CoefficientList[Series[Product[Exp[x^k] * (1 + x^k), {k, 1, nmax}], {x, 0, nmax}], x] * Range[0, nmax]! %t A346964 nmax = 20; CoefficientList[Series[Exp[x/(1 - x)] * Product[(1 + x^k), {k, 1, nmax}], {x, 0, nmax}], x] * Range[0, nmax]! %t A346964 nmax = 20; CoefficientList[Series[Product[(1 + x^k) / (1 - x^k)^(EulerPhi[k]/k), {k, 1, nmax}], {x, 0, nmax}], x] * Range[0, nmax]! %t A346964 Table[n!*Sum[LaguerreL[k, -1, -1]*PartitionsQ[n-k],{k,0,n}], {n,0,20}] %Y A346964 Cf. A000262, A088311, A330200. %K A346964 nonn %O A346964 0,3 %A A346964 _Vaclav Kotesovec_, Aug 09 2021